

VQEG 2023 San Mateo, CA, USA

Green Blind Visual Quality Assessment for Real-Time Communications

C.-C. Jay Kuo William M Hogue Professor University of Southern California

Visual Quality Assessment (VQA)

- Two Application Scenarios
 - Professional video content streaming: both raw and compressed videos are available
 - UGC video streaming and conversational video: no-reference videos are available
 - User Generated Content (UGC)
 - Capture/display by smartphones

- Multi-party conversational Video
- Low latency requirement

VQA of Professional Video

- Solution: VMAF (Video Multi-Method Assessment Fusion)
- Collaboration between USC and Netflix (2014-2015)
- Received Technology and Engineering Emmy Award (2020)

VQA of UGC & Conversational Video

- Main Challenges
 - No reference
 - Limited computational resources (i.e., memory & power consumption)
 - Low latency for interaction
- Solution:
 - Lightweight machine learning solution

About Me

- C.-C. Jay Kuo
- William M. Hogue Professor and Distinguished Professor at USC
- Director of Media Communication Lab (MCL)
- Fellow of AAAS, ACM, IEEE, NAI and SPIE.
- Academician, Academia Sinica (Taiwan)
- Publications: 15 books, 30 patents, 340 journal papers, 1000 conference papers

Industrial Collaboration (with 70+ Companies)

Collaboration with Meta (2022)

January 2022 - March 2022	March 2022 - October 2022	October 2022 - December 2022		
Blind image quality assessment (BIQA)	Blind video quality assessment (BVQA)	Reports and demos		
 Design quality-aware feature extractor for BIQA. Adopt regressors for perceptual quality score predictions. Conduct experiments on benchmark BIQA datasets. Time & memory analysis. 	 Extract features for I-frames. Include temporal information into our system, including motions, residuals, and etc. Conduct experiments on benchmark BVQA datasets. Time & memory analysis. Refining BIQA. 	 Wrap up the results and produce final reports and demos. Code organization and documentation. 		

Challenges

• Datasets

- Subjective scores are expensive to obtain
- Authentic datasets contain mixed and complex distortions
- Existing methods
 - Conventional methods
 - Hand-crafted features
 - Lack of expressiveness for user-generated images/videos
 - Deep learning methods
 - Huge models pre-trained on large datasets
 - High latency and computing complexity for mobile or edge devices

Our approach

- Green learning method [1]
 - Lightweight model without backward propagation
 - Low latency
 - Low computational resources
 - Reasonable performance

USC Viterbi School of Engineering

GreenBIQA – Exemplary Images

- Mean opinion scores (MOS)
- 1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent

MOS: 3.63

MOS: 3.72

MOS: 4.21

MOS: 1.78

GreenBIQA - Pipeline

- Increase the number of training samples
- Capture more image patterns

- Generic image features
- Quality-aware image features

- Quality score prediction
- Decision ensemble

GreenBIQA - Image features

- Multi-hop feature determination
 - Two-hop is sufficient for quality assessment \rightarrow parameter efficient

Quality-aware feature selection

GreenBIQA – Prediction Results

MOS: 3.63 Prediction: 3.65 Accurate

MOS: 3.72 Prediction: 3.81 Accurate MOS: 4.21 Prediction: 3.75 Under-estimate MOS: 1.78 Prediction: 2.68 Over-estimate

GreenBIQA - Performance Benchmarking

Dataset							
BIQA Method	LIVE-Ch	allenge	enge KonIQ-10K		Model $Size(MB)$	GFLOPs	KFLOPs/pixel
	SROCC	PLCC	SROCC	PLCC			
NIQE	0.455	0.483	0.531	0.538	-	-	-
BRISQUE	0.608	0.629	0.665	0.681	-	-	-
CORNIA	0.632	0.661	0.780	0.795	$7.4~(4.07\times)$	-	-
HOSA	0.661	0.675	0.805	0.813	$\boldsymbol{0.23}~(\boldsymbol{0.13\times})$	-	-
BIECON	0.595	0.613	0.618	0.651	$35.2 (19.34 \times)$	$0.088~(2.6\times)$	$85.94~(126.8\times)$
WaDIQaM	0.671	0.680	0.797	0.805	$25.2 (13.85 \times)$	$0.137~(4.0 \times)$	$133.82 (197.4 \times)$
NIMA(Inception-v2)	0.637	0.698	-	-	$37.4 (20.55 \times)$	$4.37~(128.5\times)$	$87.10 (128.5 \times)$
PQR	0.857	0.882	0.880	0.884	$235.9~(129.62\times)$	-	-
DBCNN	0.851	0.869	0.875	0.884	$54.6 (30.00 \times)$	$16.5~(485.3\times)$	$328.84~(485.1\times)$
HyperIQA	0.859	0.882	0.906	0.917	$104.7~(57.53\times)$	$12.8~(376.5\times)$	$255.10 (376.3 \times)$
GreenBIQA (Ours)	0.801	0.809	0.858	0.870	$1.82 (1 \times)$	$0.034~(1\times)$	$\boldsymbol{0.678}~(1\times)$
	Model Performance (Correlations with MOS)			Model Memory Efficiency	Computati	onal Complexity	

GreenBVQA – Exemplary Videos

GreenBVQA - Pipeline

• Combine GreenBIQA and GreenBVQA to a systematic pipeline

GreenBVQA - Video features

- Data cropping hierarchy for feature extraction
 - Frame->sub-image, video->sub-video, cube->sub-cube
 - Sub-image: spatial feature (2D-transform)
 - Cube: temporal, spatial-temporal feature (3D-transform)
 - Sub-cube: color feature (3D-transform)

GreenBVQA – Prediction Results

GreenBVQA - Performance Benchmarking

 Model complexity comparison, where the reported SROCC and PLCC performance numbers are against the KoNViD-1k dataset

Model	SROCC ↑	PLCC↑	Model Size (MB)↓	FLOPs↓
VSFA [37]	0.794	0.798	100.2 (15.8×)	20T (1250×)
QSA-VQM [39]	0.801	0.802	196 (30.8×)	40T (2500×)
Mirko et al. [47]	0.772	0.784	42.3 (6.6×)	1.5T (94×)
CNN-TLVQM [40]	0.814	0.817	98 (15.4×)	21T (1312×)
GreenBVQA(Ours)	0.776	0.779	6.36 (1×)	16G (1×)
	Model Pe (Correlation	rformance s with MOS)	Model Memory Efficiency	Computational Complexity

- Objective quality assessment for images and videos is essential in RTC
- There is no reference available in UGC and conversational video
- Our proposed solution, GreenBIQA and GreenBVQA, can achieve tier-one performance with ~50x smaller model size and ~500x less computational complexity as compared to SOTA deep learning methods
- Weakly supervised learning is one of the future research directions

Reference (BIQA)

[1] Bosse, S., Maniry, D., M'uller, K.-R., Wiegand, T., and Samek, W. (2017). Deep neural networks for no-reference and full-reference image quality assessment. IEEE Transactions on image processing, 27(1):206–219.

[2] Kim, J. and Lee, S. (2016). Fully deep blind image quality predictor. IEEE Journal of selected topics in signal processing, 11(1):206–220.

[3] Mittal, A., Moorthy, A. K., and Bovik, A. C. (2012a). No-reference image quality assessment in the spatial domain. IEEE Transactions on image processing, 21(12):4695–4708.

[4] Mittal, A., Soundararajan, R., and Bovik, A. C. (2012b). Making a "completely blind" image quality analyzer. IEEE Signal processing letters, 20(3):209–212.

[5] Su, S., Yan, Q., Zhu, Y., Zhang, C., Ge, X., Sun, J., and Zhang, Y. (2020). Blindly assess image quality in the wild guided by a self-adaptive hyper network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3667–3676.

[6] Talebi, Hossein, and Peyman Milanfar. "NIMA: Neural image assessment." IEEE transactions on image processing 27.8 (2018): 3998-4011.

[7] Xu, J., Ye, P., Li, Q., Du, H., Liu, Y., and Doermann, D. (2016). Blind image quality assessment based on high order statistics aggregation. IEEE Transactions on Image Processing, 25(9):4444–4457.

[8] Ye, P., Kumar, J., Kang, L., and Doermann, D. (2012). Unsupervised feature learning framework for no-reference image quality assessment. In 2012 IEEE conference on computer vision and pattern recognition, pages 1098–1105. IEEE.

[9] Zeng, H., Zhang, L., and Bovik, A. C. (2018). Blind image quality assessment with a probabilistic quality representation. In 2018 25th IEEE International Conference on Image Processing (ICIP), pages 609–613. IEEE.

[10] Zhang, W., Ma, K., Yan, J., Deng, D., and Wang, Z. (2018). Blind image quality assessment using a deep bilinear convolutional neural network. IEEE Transactions on Circuits and Systems for Video Technology, 30(1):36–47. 5

Reference (BVQA)

[1] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

[2] Li, B., Zhang, W., Tian, M., Zhai, G., and Wang, X. (2022). Blindly assess quality of in-the-wild videos via quality-aware pre-training and motion perception. IEEE Transactions on Circuits and Systems for Video Technology.

[3] Li, D., Jiang, T., and Jiang, M. (2019). Quality assessment of in-the-wild videos. In Proceedings of the 27th ACM International Conference on Multimedia, pages 2351–2359.

[4] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

[5] Tu, Z., Yu, X., Wang, Y., Birkbeck, N., Adsumilli, B., and Bovik, A. C. (2021). Rapique: Rapid and accurate video quality prediction of user generated content. IEEE Open Journal of Signal Processing, 2:425–440.

[6] Ying, Z., Mandal, M., Ghadiyaram, D., and Bovik, A. (2021). Patch-vq:'patching up'the video quality problem. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14019–14029.

Thank You.

We are happy to answer any questions.

GreenBVQA – Performance on individual datasets

TABLE VI

COMPARISON OF THE PLCC AND SROCC PERFORMANCE OF 10 BENCHMARKING METHODS AGAINST THREE VQA DATASETS.

	CVD2014		LIVE-VQC		KoNViD-1k		Average	
Model	SROCC↑	PLCC↑	SROCC↑	PLCC↑	SROCC↑	PLCC↑	SROCC↑	PLCC↑
NIQE [4]	0.475	0.607	0.593	0.631	0.539	0.551	0.535	0.596
BRISQUE [6]	0.790	0.804	0.593	0.624	0.649	0.651	0.677	0.654
CORNIA [7]	0.627	0.663	0.681	0.723	0.735	0.735	0.681	0.707
V-BLIINDS [13]	0.795	0.806	0.681	0.699	0.706	0.701	0.727	0.735
TLVQM [32]	0.802	0.823	0.783	0.785	0.763	0.765	0.782	0.791
VIDEVAL [54]	0.814	0.832	0.744	0.748	0.770	0.771	0.776	0.783
VSFA [37]	0.850	0.859	0.717	0.770	0.794	0.798	0.787	0.809
RAPIQUE [18]	0.807	0.823	0.741	0.761	0.788	0.805	0.778	0.796
QSA-VQM [39]	0.850	<u>0.859</u>	0.742	0.778	0.801	0.802	0.797	0.813
Mirko <i>et al.</i> [47]	0.834	0.848	0.742	0.780	0.772	0.784	0.782	0.804
CNN-TLVQM [40]	0.852	0.868	0.811	0.828	0.814	0.817	0.825	0.837
GreenBVQA(Ours)	0.835	0.854	0.785	<u>0.789</u>	0.776	0.779	<u>0.798</u>	0.807

GreenBVQA – Computation efficiency

• Three settings of videos (240frs@540p, 364frs@480p, 467frs@720p)

Model	240frs@540p	364frs@480p	467frs@720p	
V-BLIINDS [13]	382.06	361.39	1391.00	
QSA-VQM [39]	281.21	256.13	900.72	
VSFA [37]	269.84	249.21	936.84	
TLVQM [32]	50.73	46.32	136.89	
NIQE [4]	45.65	41.97	155.90	
BRISQUE [6]	12.69	12.34	41.22	
Mirko et al. [47]	8.43	6.24	16.29	
GreenBVQA	3.22	4.88	6.26	

INFERENCE TIME COMPARISON IN SECONDS.

GreenBVQA – Computation efficiency

• Three settings of videos (240frs@540p, 364frs@480p, 467frs@720p)

