AVQBits — Adaptive Video Quality Model Based on Bitstream Information for Various Video Applications

Rakesh Rao Ramachandra Rao, Steve Göring, Alexander Raake

Audiovisual Technology Group, Technische Universität Ilmenau, Germany VQEG

December 18, 2023

technische Universität Ilmenau

AVQBits: Introduction

4 Models [1, 2]

- \circ AVQBits|M3: Mode 3 (Principal model) \rightarrow ITU-T Rec. P.1204.3 [3, 4]
- AVQBits M1: Mode 1
- AVQBits M0: Mode 0
- AVQBits H0: Hybrid No-reference Mode 0 (HYN0)

Publicly available^{1,2}

¹http://git.avt-imt.de/bitstream_mode3_p1204_3 ²http://git.avt-imt.de/p1204_3_extensions

AVQBits M3: Model Description

- Input: entire bitstream
- ▶ Parametric/Core model: QP, display and coding resolution, display and coding framerate
- ▶ Machine-learning-based model: QP, average motion per-frame, horizontal motion, frame size + frame type, bitrate, resolution, framerate, Core model output
- Final prediction: $0.5 \cdot M_{par} + 0.5 \cdot M_{RF}$
- ▶ Standardized as ITU-T Rec. P.1204.3 [3]

TECHNISCHE UNIVERSITÄT

H MENAU

AVQBits M1: Model Description

- Input: metadata (resolution, bitrate, framerate, video codec) + frame-type + frame-sizes
- ▶ Uses AVQBits M3 Core Model
- ▶ Affected component: Quantization/Coding degradation
 - Only mode dependent component
 - $\circ~$ QP estimation: metadata + frame-related features

AVQBits M0: Model Description

- Input: metadata (resolution, bitrate, framerate, video codec)
- ► Uses AVQBits M3 Core Model
- ▶ QP estimation: metadata

AVQBits H0: Model Description

- Input: Distorted video (decoded pixels) + metadata
- Central idea
 - Step 1: "Quality equivalent bitstream" (QEB) creation: decoded pixels + metadata
 - Step 2: Quality prediction: Modified AVQBits | M3
- Two instances: codec used to create QEB
 - AVQBits|H0|s: same codec as original bitstream
 - AVQBits|H0|f: One pre-defined codec (e.g. H.265)

TECHNISCHE LINIVERSITÄ

H MENAU

AVQBits: Model Evaluation (1)

▶ Dataset: AVT-VQDB-UHD-1; Metrics: Pearson correlation, RMSE

► AVQBits comparison

- AVQBits | M3: best performing
- AVQBits|H0|s: performs on-par with AVQBits|M3
- $\circ~\textit{AVQBits}|\textit{H0}|\textit{f}:$ more sophisticated codec mapping \rightarrow increased prediction accuracy
- AVQBits|M1, AVQBits|M0: least well-performing

Comparison with SoA models

- $\circ~$ VMAF: best performing pixel model
- AVQBits|M3, AVQBits|H0: outperform VMAF
- AVQBits|M1, AVQBits|M0: outperform best performing NR pixel models (BRISQUE, NIQE)
- ▶ P.NATS Phase 2: $AVQBits|M3 \rightarrow best performing model$

AVQBits: Evaluation of Gaming Video Quality (1)

TECHNISCHE UNIVERSITÄT

- Motivation
 - $\circ~$ Advances in passive and interactive gaming services
 - $\circ~$ Increase in popularity of gaming streaming services (e.g: Twitch.tv)
 - $\circ~$ Need for video quality models for gaming content (cloud gaming)
- Evaluation using 4 datasets
 - GVS [5], KUGVD [6]: libx264 encoding
 - $\circ~$ CGVDS [7]: NVENC (H.264); simulates encoding in cloud gaming services
 - Twitch [8]: proprietary Twitch encoding
 - $\circ~$ GVS, KUGVD, CGVDS: publicly available
 - Maximum resolution: 1080*p*

AVQBits: Evaluation of Gaming Video Quality (2)

- ► AVQBits models evaluated out-of-the-box; no dedicated retraining
- ► AVQBits comparison
 - AVQBits|M3, AVQBits|M1, AVQBits|H0: perform on-par
 - \circ *AVQBits*|*M*0: dedicated retraining \rightarrow potential accuracy improvement
- Comparison with SoA models
 - $\circ~$ Best performing pixel models: VMAF (FR), NDNetGaming (NR, CGVDS)
 - AVQBits|M3, AVQBits|M1, AVQBits|H0: perform on-par with VMAF and NDNetGaming
 - *AVQBits*|*M*0: outperforms traditional NR models (BRISQUE, NIQE)

AVQBits: Evaluation of 360° Video Quality (1)

- Considered dataset: 360 Streaming Video Quality Dataset ³
- ► 3 different tests
- ► Source content duration: 30 s
- ▶ Resolution: 1080p 8K

▶ 2 different HMDs: HTC Vive (test_1), HTC Vive Pro (test_2 and test_3)

³*Fremerey, Göring, Ramachandra Rao, Huang, and Raake* 2020: "Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality"

AVQBits: Evaluation of 360° Video Quality (2)

- ► AVQBits models evaluated out-of-the-box; no dedicated retraining
- ► AVQBits comparison
 - AVQBits|M3, AVQBits|H0: perform on-par
 - $\circ~AVQBits|M1,~AVQBits|M0:$ lower accuracy; dedicated retraining \rightarrow potential accuracy improvement
- ► Comparsison with SoA models
 - $\circ~$ Best performing pixel models: VMAF_cc [10], VMAF, WS_SSIM
 - AVQBits|M3, AVQBits|H0: outperform VMAF, VMAF_cc and WS_SSIM

AVQBits: Overall Integral Quality Model

- ▶ Based on ITU-T Rec. P.1203.3 [11]
 - Overall audiovisual quality (0.35)
 - ▷ Temporal effects related to video-quality fluctuations: per-1-sec audiovisual quality score + 3 additional factors (needed due to limited accuracy of per-1-sec audiovisual scores)
 - Limited accuracy of per-1-sec audiovisual scores: reverse-engineered from overall session quality scores
- ▶ New 0.35
 - $\circ\,$ per-1-sec audiovisual quality scores capture temporal effects related to video-quality fluctuations
 - $\circ~$ Rationale \rightarrow per-1-sec and per-segment scores of AVQBits more accurate than ITU-T Rec. P.1203.1 [12]
 - Added as appendix to ITU-T Rec. P.1204.3 [3]

AVQBits: Evaluation of Overall Integral Quality (1) TECHNISCHE UNIVERSITÄT

► PNATS-UHD-1-Long dataset

- Created as part of P.NATS Phase 2 competition
- $\circ\,$ 5 tests conducted by 4 different labs: 1 test conducted by TUIL
- $\circ~$ Source audiovisual content duration: 1-5 min
- \circ Context: Mobile + TV
- $\circ~$ Distortions: video quality switches, initial loading delay, stalling events

AVQBits: Evaluation of Overall Integral Quality (2) TECHNISCHE UNIVERSITÄT

- ► AVQBits|M3: best performing model
- ► AVQBits H0
 - $\circ~$ Prediction accuracy lower than AVQBits|M3 unlike short-term video quality
 - $\circ~$ Additional mapping for per-1-sec scores may increase prediction accuracy
- ► AVQBits|M1, AVQBits|M0
 - Lower prediction accuracy
 - $\circ~$ Possible reason: per-1-sec quality score same as per-segment score \rightarrow no optimal handling of effect of temporal efforts related to video-quality fluctuations

Thank you for your attention

References I

- Rakesh Rao Ramachandra Rao, Steve Göring, and Alexander Raake.
 "AVQBits Adaptive Video Quality Model Based on Bitstream Information for Various Video Applications". In: *IEEE Access* 10 (2022).
- [2] Rakesh Rao Ramachandra Rao et al. "Bitstream-based Model Standard for 4K/UHD: ITU-T P.1204.3 – Model Details, Evaluation, Analysis and Open Source Implementation". In: *Twelfth IEEE International Conference on Quality of Multimedia Experience (QoMEX)*. Athlone, Ireland, May 2020.
- [3] ITU-T. Recommendation P.1204.3 : Video quality assessment of streaming services over reliable transport for resolutions up to 4K with access to full bitstream information. Tech. rep. International Telecommunication Union, 2019.

References II

- [4] Alexander Raake et al. "Multi-model standard for bitstream-, pixel-based and hybrid video quality assessment of UHD/4K: ITU-T P.1204". In: IEEE Access 8 (2020).
- [5] Nabajeet Barman et al. "GamingVideoSET: a dataset for gaming video streaming applications". In: 2018 16th Annual Workshop on Network and Systems Support for Games (NetGames). IEEE. 2018, pp. 1–6.
- [6] Nabajeet Barman et al. "No-reference video quality estimation based on machine learning for passive gaming video streaming applications". In: *IEEE Access* 7 (2019), pp. 74511–74527.

References III

- Saman Zadtootaghaj et al. "Quality Estimation Models for Gaming Video Streaming Services Using Perceptual Video Quality Dimensions".
 In: Proceedings of the 11th International Conference on Multimedia Systems. ACM. 2020.
- [8] Rakesh Rao Ramachandra Rao et al. "A Large-scale Evaluation of the bitstream-based video-quality model ITU-T P.1204.3 on Gaming Content". In: 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP). IEEE. 2020.
- [9] Stephan Fremerey et al. "Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality". In: 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP). IEEE. 2020.

References IV

Ch: TECHNISCHE UNIVERSITÄT ILMENAU

- [10] Steve Göring, Christopher Krämmer, and Alexander Raake. "cencro Speedup of Video Quality Calculation using Center Cropping". In: 2019 IEEE ISM. Dec. 2019, pp. 1–8.
- [11] ITU-T Rec. P.1203.3. Parametric bitstream-based quality assessment of progressive download and adaptive audiovisual streaming services over reliable transport - Quality integration module. Geneva, Switzerland: International Telecommunication Union, 2020.
- [12] ITU-T Rec. P.1203.1. Parametric bitstream-based quality assessment of progressive download and adaptive audiovisual streaming services over reliable transport – Video quality estimation module. Geneva, Switzerland: International Telecommunication Union, 2019.

References V

- [13] John Allnatt. "Subjective rating and apparent magnitude". In: International Journal of Man-Machine Studies 7.6 (1975), pp. 801–816.
- [14] Alexander Raake et al. "A bitstream-based, scalable video-quality model for HTTP adaptive streaming: ITU-T P.1203.1". In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX). 2017, pp. 1–6.
- [15] Nils Olof Johannesson. "The ETSI Computation Model: A Tool for Transmission Planning of Telephone Networks". In: IEEE Communications Magazine Jan. (1997), pp. 70–79.
- [16] Sebastian Möller. Assessment and Prediction of Speech Quality in *Telecommunications*. Springer Science & Business Media, 2000.

References VI

- [17] ITU-T Rec. G.107. The E-Model, a Computational Model for Use in Transmission Planning. International Telecommunication Union. CH-Geneva, 2009.
- [18] ITU-T. P.1401 : Methods, metrics and procedures for statistical evaluation, qualification and comparison of objective quality prediction models. Tech. rep. Int. Telecommunication Union, 2014.
- [19] ITU-T. RECOMMENDATION ITU-R BT.500-13 Methodology for the subjective assessment of the quality of television pictures. Tech. rep. Int. Telecommunication Union, 2014.

Back-up

AVQBits M3: Parametric Part – Core Model

- ▶ Degradation-based modeling approach [13, 14, 15, 16, 17]
- ► 3 types of degradation
 - Quantization/Coding degradation (D_q): f(QP)
 - Upscaling degradation (D_u): $f(coding_res, display_res)$
 - Temporal degradation (D_t): $f(coding_framerate, display_framerate)$
- Degradation values expressed on a 0 to 100 scale
 - $\circ~$ Compensates for the compression of the 5-point ACR scale at the scale ends

AVQBits M3: Parametric Part – Prediction

$$M_{P_{[0,100]}} = 100 - (D_q + D_u + D_t)$$
(1)

$$M_{P_{[1,4.5]}} = MOS from R(M_{P_{[0,100]}})$$
(2)

$$M_{par} = scaleto5(M_{P_{[1,4.5]}})$$
(3)

AVQBits M3: Machine Learning Part

(4)

Estimates the "residual"

 $target_residual = MOS - M_{par}$

▶ Based on Random Forests (RF)

- \circ Hyper-parameters: *trees* = 20 and *depth* = 8
- $\circ~$ One RF for PC/TV and Mobile/Tablet

Meta-features

- QP
- Average motion per-frame
- Motion in the x-direction (horizontal motion)
- \circ Frame sizes + frame type
- \circ Codec, bitrate, resolution, framerate, M_{par}

(5)

Prediction of the ML-part

 $M_{RF} = M_{par} + predicted_residual$

► Final prediction

$$Prediction = w \cdot M_{par} + (1 - w) \cdot M_{RF}$$
(6)

where, w = 0.5

AVQBits M1: Model Description

- Available input information
 - Metadata (bitrate, resolution, framerate and codec) + frame size and frame type 0 information
- Uses AVQBits M3 Core Model

Metadata

- Affected component: Quantization/Coding degradation
 - Only mode dependent component
 - QP estimation: metadata (resolution, bitrate, framerate, video codec) + frame-related features

Adaptation of the Quantization/Coding degradation

 $\circ~$ True QP unavailable \rightarrow estimation of QP using metadata and frame-related features

► QP Prediction

 $QP_{pred} = a_{qp_m1} + b_{qp_m1} \cdot log(ms_nl) + c_{qp_m1} \cdot log(resolution) + d_{qp_m1} \cdot log(framerate) + e_{qp_m1} \cdot log(fsratio)$ (7)

AVQBits: Model Evaluation

Model	RMSE	PCC	SROCC	Kendall	R^2 Score
VMAF	0.531	0.880	0.889	0.721	0.774
Brisque	0.653	0.815	0.838	0.653	0.660
NIQE	1.009	0.432	0.445	0.301	0.187
PSNR	1.109	0.131	0.682	0.531	0.017
SSIM	0.956	0.520	0.761	0.569	0.270
MS-SSIM	0.896	0.599	0.752	0.563	0.358
ADM2	0.580	0.855	0.874	0.698	0.731
VIFP	0.757	0.736	0.756	0.562	0.542
AVQBits M3	0.306	0.962	0.948	0.804	0.925
AVQBits M1	0.486	0.901	0.904	0.738	0.812
AVQBits M0	0.503	0.894	0.891	0.701	0.799
AVQBits H0 s	0.373	0.943	0.935	0.778	0.889
AVQBits H0 f	0.439	0.920	0.914	0.749	0.846

Table: Comparison between AVQBits and SoA models.

NOTE: RMSE calculated on a 5-point ACR scale after linear mapping between model output and subjective scores as described in ITU-T P.1401 [18]

AVQBits: Evaluation of Gaming Video Quality (1)

UC TECHNISCHE UNIVERSITÄT ILMENAU

Table: Overview of the used gaming datasets.

Dataset	GVS [5]	KUGVD [6]	CGVDS [7]	Twitch [8]
# Sources	6	6	15	36
Resolution	480p, 720p, 1080p	480p, 720p, 1080p	480p, 720p, 1080p	160p, 360p, 480p, 720p, 900p, 1080p
Framerate	30 fps	30 fps	20, 30, 60 fps	30, 60 fps
# PVS	90	90	72 * 5	90
Duration	30 s	30 s	30 s	30 s
# Participants	25	17	>100 (5 tests)	29
Encoder	ffmpeg ×264	ffmpeg ×264	NVENC (H.264)	H.264
Encoding mode	CBR	CBR	CBR	Twitch default
Preset	veryfast	veryfast	llhq	Twitch default

AVQBits: Evaluation of Gaming Video Quality (2)

CC TECHNISCHE UNIVERSITÄT ILMENAU

				•		
Dataset	Model	RMSE	PCC	SROCC	Kendall	R ² Score
GVS	PSNR	0.63	0.74	0.74	0.57	0.55
GVS	SSIM	0.57	0.80	0.80	0.61	0.62
GVS	VMAF	0.47	0.87	0.86	0.69	0.75
GVS	NIQE	0.64	0.77	0.71	0.53	0.52
GVS	AVQBits M3	0.45	0.88	0.87	0.69	0.77
GVS	AVQBits M1	0.42	0.89	0.87	0.71	0.79
GVS	AVQBits M0	0.69	0.67	0.65	0.49	0.45
GVS	AVQBits H0 s	0.48	0.86	0.86	0.69	0.74
GVS	AVQBits H0 f	0.62	0.75	0.73	0.56	0.56
KUGVD	PSNR	0.62	0.80	0.84	0.67	0.64
KUGVD	SSIM	0.48	0.89	0.91	0.74	0.79
KUGVD	VMAF	0.41	0.92	0.92	0.77	0.85
KUGVD	NIQE	0.55	0.85	0.84	0.66	0.72
KUGVD	AVQBits M3	0.39	0.93	0.92	0.77	0.86
KUGVD	AVQBits M1	0.50	0.87	0.86	0.69	0.76
KUGVD	AVQBits M0	0.84	0.59	0.57	0.41	0.35
KUGVD	AVQBits H0 s	0.46	0.90	0.89	0.72	0.80
KUGVD	AVQBits H0 f	0.65	0.78	0.76	0.58	0.61

Table: Comparison between AVQBits and SoA models.

AVQBits: Evaluation of Gaming Video Quality (3)

TECHNISCHE UNIVERSITÄT

Table: Comparison between AVQBits and SoA models.

Dataset	Model	RMSE	PCC	SROCC	Kendall	R ² Score
CGVDS	PSNR	0.60	0.64	0.65	0.47	0.41
CGVDS	SSIM	0.59	0.67	0.78	0.60	0.45
CGVDS	VMAF	0.38	0.88	0.87	0.69	0.77
CGVDS	NIQE	0.66	0.54	0.56	0.41	0.29
CGVDS	AVQBits M3	0.38	0.85	0.84	0.65	0.72
CGVDS	AVQBits M1	0.36	0.90	0.88	0.70	0.78
CGVDS	AVQBits M0	0.47	0.78	0.75	0.56	0.60
CGVDS	AVQBits H0 s	0.36	0.89	0.88	0.70	0.79
CGVDS	AVQBits H0 f	0.38	0.87	0.87	0.68	0.76
Twitch	NIQE	0.96	0.24	0.11	0.17	0.04
Twitch	AVQBits M3	0.40	0.93	0.93	0.77	0.87
Twitch	AVQBits M1	0.37	0.94	0.93	0.77	0.89
Twitch	AVQBits M0	0.43	0.92	0.89	0.71	0.85
Twitch	AVQBits H0 s	0.31	0.96	0.95	0.82	0.92
Twitch	AVQBits H0 f	0.30	0.96	0.95	0.81	0.92

NOTE: RMSE calculated on a 5-point ACR scale after linear mapping between model output and subjective scores as described in ITU-T P.1401 [18]

AVQBits: Evaluation of 360° Video Quality (1)

Table: Details of the 360 Streaming Video Quality Dataset [9].

Test	test_1	test_2	test_3
# Sources	8	8	7
Codecs	H.265	H.265	H.265
Resolution	1080p, 4K	1080p, 4K	4K, 6K, 8K
Framerate	30 fps	30 fps	30 fps
# PVS	64	64	63
Duration	30 s	30 s	30 s
# Participants	27	27	27
Display	HTC Vive	HTC Vive Pro	HTC Vive Pro
Test Method	5-point ACR [19]	5-point ACR [19]	5-point ACR [19]

AVQBits: Evaluation of 360° Video Quality (2)

Table: Comparison between AVQBits and SoA models.

Model	RMSE	PCC	SROCC	Kendall
VMAF_cc	0.384	0.898	0.872	0.700
VMAF	0.431	0.870	0.834	0.664
ADM2	0.494	0.825	0.819	0.640
WS_SSIM	0.500	0.820	0.864	0.671
VIFP	0.554	0.773	0.656	0.502
WS_PSNR	0.598	0.729	0.767	0.582
SSIM	0.622	0.702	0.730	0.563
PSNR	0.762	0.489	0.627	0.469
AVQBits M3	0.377	0.894	0.870	0.679
AVQBits M1	0.581	0.709	0.677	0.497
AVQBits M0	0.627	0.658	0.686	0.401
AVQBits H0 s	0.356	0.906	0.886	0.695

NOTE: RMSE calculated on a 5-point ACR scale after linear mapping between model output and subjective scores as described in ITU-T P.1401 [18]

AVQBits: Overall Integral Quality Model (1)

- ▶ Based on ITU-T Rec. P.1203.3 [11]
- ▶ Overall audiovisual quality (0.35) according to ITU-T Rec. P.1203.3
 - ∘ *f*(*per* − 1 − *sec quality*, *negBias*, *oscComp*, *adaptComp*)
 - $\circ~$ negBias, oscComp, adaptComp \rightarrow take into account certain temporal effects related to video-quality fluctuations
- $\blacktriangleright \text{ New O.35} \rightarrow f(per 1 sec \ quality)$
 - $\circ~$ Rationale \rightarrow per-1-sec and per-segment scores of AVQBits more accurate than ITU-T Rec. P.1203.1 [12]

AVQBits: Overall Integral Quality (2)

Table: Details of the P.NATS-UHD-1-Long dataset [1].

Test	test_1	test_2	test_3	test_4	test_5
# Sources	60	60	30	30	14
Codecs	H.264, H.265, VP9				
Resolution	240p - 1440p	360p - 2160p	240p - 1440p	360p - 2160p	240p - 1440p
Framerate	15 - 60 fps	24 - 60 fps	15 - 60 fps	24 - 60 fps	15 - 60 fps
# PVS	60	60	30	30	14
Duration	1 min	1 min	2 min	2 min	5 min
Display device	Mobile	TV	Mobile	TV	Mobile
# Participants	24	31	24	31	36
Test Method	5-point ACR [19]				

AVQBits: Evaluation of Overall Integral Quality

TECHNISCHE UNIVERSITÄT

Table: Performance of AVQBits on the P.NATS-UHD-1-Long dataset [1].

Test	Model	RMSE	PCC	SROCC	Kendall	R^2 Score
All	AVQBits M3 / P.1204.3	0.479	0.864	0.844	0.660	0.747
All	AVQBits M1	0.596	0.780	0.787	0.602	0.608
All	AVQBits M0	0.694	0.686	0.683	0.500	0.471
All	AVQBits H0 s	0.570	0.797	0.768	0.584	0.635
All	AVQBits H0 f	0.582	0.787	0.756	0.572	0.619

NOTE: RMSE calculated on a 5-point ACR scale after linear mapping between model output and subjective scores as described in ITU-T P.1401 [18]