

# Predicting local distortions introduced by AV1 using Deep Features

Andréas Pastor<sup>1</sup>, Lukáš Krasula<sup>2</sup>, Xiaoqing Zhu<sup>2</sup>, Zhi Li<sup>2</sup>, Patrick Le Callet<sup>1,3</sup> <sup>1</sup> Nantes Université, Ecole Centrale Nantes, CNRS, LS2N, UMR 6004, F–44000 Nantes, France <sup>2</sup> Netflix Inc., Los Gatos, CA, USA





#### The problem we are trying to answer

- Video encoding is driven by measures (SSE, SAD) to assess the visibility of distortion locally, but these **pixel-based measures** are not well tuned to how humans perceive distortions, but efficient to compute.

#### The problem we are trying to answer

- Video encoding is driven by measures (SSE, SAD) to assess the visibility of distortion locally, but these **pixel-based measures** are not well tuned to how humans perceive distortions, but efficient to compute.
- Our goal is to correct these measurements at a local horizon in a video to improve the overall quality and reduce bitrate usage: What is this local horizon?

#### The problem we are trying to answer

- Video encoding is driven by measures (SSE, SAD) to assess the visibility of distortion locally, but these **pixel-based measures** are not well tuned to how humans perceive distortions, but efficient to compute.
- Our goal is to correct these measurements at a local horizon in a video to improve the overall quality and reduce bitrate usage: What is this local horizon?
- Requirement: a ground truth dataset to drive the research development and metric creation. What is this ground truth data? How can we leverage
  Deep Features extracted from Neural Network to correct SSE?

# Connecting video encoding and localized Human Visual System perception with "Perceptual Unit"

• Video encoders make decisions on Coding Units (CUs): mode selection, partionating, transform, filters ...



# Connecting video encoding and localized Human Visual System perception with "Perceptual Unit"

- Video encoders make decisions on Coding Units (CUs): mode selection, ...
- A gaze performed by an human eye is:
  - spatially located, around foveated view: 1° of visual angle, 60ppd under standard viewing condition
  - **temporally located**: gaze fixation movement ~200ms
  - aligned along the direction of an object: **pursuit**



# Connecting video encoding and localized Human Visual System perception with "Perceptual Unit"

- Video encoders make decisions on Coding Units (CUs): mode selection, ...
- A gaze performed by an human eye is:
  - spatially located, around foveated view: 1° of visual angle, 60ppd under standard viewing condition
  - **temporally located**: gaze fixation movement ~200ms
  - aligned along the direction of an object: **pursuit**
- **Perceptual Unit (PU):** same spatio-temporal horizon as a gaze on which we want to model how humans perceive distortion to drive CUs encoding



7

### Visual example

Perceptual Units and Perceptual Difference curves in encoding process

REFERENCE FRAME

AVE TAL

In She

-095888-0 1009

9















### Dataset creation of tube-contents

Content selection and data collection

#### Content creation: encoding

To select tube-contents, we followed these steps:

- **Step 1**: Encoding of sources (SRCs).
  - 115 SRCs from VideoSet dataset[1] @1080p 30fps
  - Encoding with libaom AV1 in Random Access mode at fixed QP
  - 31 Processed Video Sequences (PVS): encoded with --cq-level ranging from 3 to 63, step of 2



[1] Haiqiang Wang, Ioannis Katsavounidis, Xin Zhou, Jiwu Huang, Man-On Pun, Xin Jin, Ronggang Wang, Xu Wang, Yun Zhang, Jeonghoon Park,
18
Jiantong Zhou, Shawmin Lei, Sam Kwong, C.-C. Jay Kuo, December 29, 2016, "VideoSet", IEEE Dataport, doi: <u>https://dx.doi.org/10.21227/H2H01C</u>

#### Content creation: tube-content extraction

- **Step 2**: Extraction of tube-contents aligned on the motion: tube size = a PU (64x64px, 400ms)
  - A tube-content: a reference tube and 31 distorted version of it from PVS
  - 100K tube-contents extracted from the 115 SRCs



#### Clustering of tube-contents

- **Step 3**: Clustering of the 100K tube-contents from the response of quality metrics.
  - Quality metrics used: VMAF, SSIM, PSNR, LPIPS
  - Feature extraction from the relation (red line) in all pairs of quality metrics (slope, intercept, error)
  - 96 clusters are learned with K-Means





#### Tube-contents selection for subjective evaluation

- **Final step**: 268 tube-contents (2+ per cluster) sampled.
  - Per tube-content: 6 distortion levels out of the 31 available are selected using VMAF
    - VMAF as a fidelity proxy for distortion level spacing selection (DVMAF = 100 VMAF)





#### Tube-contents selection for subjective evaluation

- **Final step**: 268 tube-contents (2+ per cluster) sampled.
  - Per tube-content: 6 distortion levels out of the 31 available are selected using VMAF
    - VMAF as a fidelity proxy for distortion level spacing selection (DVMAF = 100 VMAF)





#### Tube-contents selection for subjective evaluation

- **Final step**: 268 tube-contents (2+ per cluster) sampled.
  - Per tube-content: 6 distortion levels out of the 31 available are selected using VMAF
    - VMAF as a fidelity proxy for distortion level spacing selection (DVMAF = 100 VMAF)





#### Example of tube-contents and distortion levels?



#### What kind of subjective data are we trying to collect on a PU?

A fidelity loss evaluation: How much distortions the human eyes can perceive between a reference PU and an encoded/compressed/distorted version of it?



Not noticeable distortion (d = 0)

Very noticeable distortion (d >> 0)

#### What kind of subjective data are we trying to collect on a PU?

A fidelity loss evaluation: How much distortions the human eyes can perceive between a reference PU and an encoded/compressed/distorted version of it?





Noticeable distortion (d > 0)

Very noticeable distortion  $(d \ge 0)$ 



#### Collecting Ground Truth Efficiently

- Available subjective methodologies:
  - Pairwise comparison, (with boosting strategies as ARD, Hybrid-MST[1], ASAP[2] ...)
  - Quadruplets, triplets, 2-AFC, ... with boosting strategies AFAD[3]
- From subjective judgments to perceptual continuum:
  - Bradley-Terry, Thurstonian models, ...
  - Maximum Likelihood Difference Scaling MLDS[4] solvers

[1] Li, J., Mantiuk, R., Wang, J., Ling, S., & Le Callet, P. (2018). Hybrid-MST: A hybrid active sampling strategy for pairwise preference aggregation. Advances in neural information processing systems, 31.

[2] Mikhailiuk, A., Wilmot, C., Perez-Ortiz, M., Yue, D., & Mantiuk, R. K. (2021, January). Active sampling for pairwise comparisons via approximate message passing and information gain maximization. In *2020 25th International Conference on Pattern Recognition (ICPR)* (pp. 2559-2566). IEEE.
[3] A. Pastor, L. Krasula, X. Zhu, Z. Li and P. Le Callet, "Improving Maximum Likelihood Difference Scaling Method To Measure Inter Content Scale, 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2045-2049, doi: 10.1109/ICASSP43922.2022.9746681.

[4] Knoblauch, K., & Maloney, L. T. (2008). MLDS: Maximum likelihood difference scaling in R. Journal of Statistical Software, 25, 1-26.

#### Quadruplet "intra" and "inter-content" comparison

- Participants perform subjective annotations on "intra" and "inter-content" quadruplets
- 50 000 judgments collected, 25 000 "intra" and 25 000 "inter" from naïves observers
- Experiment in crowdsourcing and observers annotated 40 quadruplets per session (~7min)

#### "INTRA"

Where do you perceive a greater difference between the lower two and the upper two patches?





#### "INTER"

Where do you perceive a greater difference between the lower two and the upper two patches?





#### Example of PD–MSE curves obtained

Here, the 54 PD–MSE curves in the test set of dataset (20%):

- MSE distortion on X-axis
- subjective perceptual difference from observers on Y-axis



Example of under and over estimated distortions if we use MSE\_Y as a PD predictor

#### Example of PD–MSE curves obtained

Here, the 54 PD–MSE curves in the test set of dataset (20%):

- MSE distortion on X-axis
- subjective perceptual difference from observers on Y-axis



Example of under and over estimated distortions if we use MSE\_Y as a PD predictor

### Per tube weighting of MSE from Deep Semantic Features

PD-curve modelisation, proposed model, training and performances

#### proposed model for PD–MSE curve prediction

- step 0: model PD–MSE curves
- step 1: extract deep learning features from references tubes
- step 2: perform dimensionality reduction with PCA
- step 3: use SVM from topK PCA features pooling and predict PD-curves slopes

#### Step 0: modeling of PD–MSE curves

Use prior knowledge to simplify and model PD–MSE curves with linear function (orange) or exp function (green)

$$PD'_{score} = A \times MSE_Y$$

$$PD'_{score} = A \times (e^{B \times MSE_Y} - 1)$$

Train models to predict linA, and expA + expB



#### Step 1: extract Deep Learning features from reference tubes

- Why extract DL features from reference tubes only?
  - as we aim to correct MSE, a cheap statistic available during encoding
- Process for each reference tube:
  - pass each frame patch in Neural Network backbone (AlexNet, VGG, ...)
  - get each layer filter activation
  - average them along spatial dimension
  - then compute temporal average and temporal std
  - obtain finally 2 vectors of 1152 features (AlexNet) per reference tube
- Perform the operation over the 100K tubes of the database



#### Step 2: perform dimensionality reduction with PCA

Goal: reduce 1152 features vectors to K features to ease model training on limited data

Use PCA to learn a projection from extracted features from 100K unlabeled tube-contents

Use the learned projection to extract top K Principal Components of train set features



#### **Training options**

Learn SVM pooling to predict a subjective score for content i, distortion j:

 $PD_{i,j} = SVM(pca_i^1, pca_i^2, \dots, mse_{i,j})$ 



Learn SVM pooling to predict slope of linear fitting

 $Slope_i = SVM(pca_i^1, pca_i^2, \dots) \ PD_{i,j} = Slope_i imes mse_{i,j}$ 

$$egin{aligned} a_i &= SVM_a(pca_i^1, pca_i^2, \dots)\ b_i &= SVM_b(pca_i^1, pca_i^2, \dots)\ PD_{i,j} &= a_i imes (e^{b imes mse_{i,j}} - 1) \end{aligned}$$



#### Add our prior knowledge



g to Learn 2 SVMs to predict a,b ear fitting coeff of exp fitting:

 $mse_{i,j} = MSE(Tube_{i,0}, Tube_{i,j}) = MSE(Tube_{i,ref}, Tube_{i,j})$ 

#### Performance of all metrics on test set

TABLE II

Comparison with Full Reference metric (classic and Deep Learning based) and "Reference-only/MSE corrector" metrics

Prior modeling of the PD–MSE curves increases performances

FULL-REFERENCE AND REFERENCE-ONLY METRICS SCORES ON DATASET TEST SET. \* INDICATE PERFORMANCES OF RETRAINED METRICS.

| Туре        | Metrics            | PLCC  | SRCC  | KRCC  | RMSE  |
|-------------|--------------------|-------|-------|-------|-------|
|             | PSNR <sub>CB</sub> | 0.472 | 0.594 | 0.428 | 0.535 |
|             | PSNR <sub>CR</sub> | 0.447 | 0.539 | 0.376 | 0.539 |
| Full-       | PSNR <sub>Y</sub>  | 0.517 | 0.685 | 0.507 | 0.526 |
| Reference   | SSIM [4]           | 0.629 | 0.763 | 0.586 | 0.481 |
| IQA/VQA     | VIF [22]           | 0.693 | 0.780 | 0.603 | 0.431 |
| no semantic | DLM [23]           | 0.846 | 0.869 | 0.696 | 0.321 |
|             | VMAF [8]           | 0.833 | 0.867 | 0.694 | 0.335 |
|             | VMAF*              | 0.875 | 0.900 | 0.747 | 0.291 |
| DL Full-    | LPIPS-vgg [1]      | 0.711 | 0.795 | 0.631 | 0.420 |
| Reference   | LPIPS-squeeze      | 0.674 | 0.785 | 0.622 | 0.445 |
| IQA         | LPIPS-alex         | 0.628 | 0.754 | 0.588 | 0.470 |
| semantic    | DISTS [3]          | 0.787 | 0.851 | 0.671 | 0.369 |
| Reference-  | WPSNR [5]          | 0.618 | 0.819 | 0.642 | 0.483 |
| Only        | XPSNR [6]          | 0.665 | 0.828 | 0.652 | 0.461 |
| no semantic | libaom tune=ssim   | 0.653 | 0.795 | 0.614 | 0.476 |
| DL          | our model (raw)    | 0.844 | 0.878 | 0.714 | 0.336 |
| Reference-  | our model (lin)    | 0.843 | 0.888 | 0.721 | 0.328 |
| Only VQA    | our model (exp)    | 0.852 | 0.888 | 0.728 | 0.316 |

#### Conclusion

- Human perception is important to drive encoding algorithms (AV1, ...)
- Creation of a dataset of 268 tube-contents with inter-content scaling
- Benchmark of existing quality metrics
- Creation of a metric to correct MSE
- Ongoing next steps:
  - Perceptually tuned Rate Distortion Optimization in libaom
  - going from local to global video scale distortion prediction