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Introduction

Raw ratings from subjects are typically noisy
Subject fatigue or distraction
Complex stimuli can impact the accuracy of naive raters
Presence of spammer annotators

Statistical models for subjective quality recovery and peculiar
behavior identification

Different approaches have been proposed
Subjects are commonly assumed to exhibit bias and
inconsistency

Our work adopts this common perspective, but:
Rather than an overall bias, we define positional bias weights
Subject inconsistency arises from a scoring model that is
derived, not assumed a priori
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Notation

I: the set of stimuli that have been rated;
J : the set of subjects that rated the stimuli in I;
K: the set of opinion scores available on the quality scale;
F : the set of influence factors that might affect the ratings of
a subject;
r ji : the rating of the subject j ∈ J for the stimulus i ∈ I;
R: all the ratings collected during the subjective test;
nik : the number of subjects in J that chose the opinion score
k ∈ K for the stimulus i ∈ I.
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Subjective Quality Recovery

The MOS of stimulus i ∈ I is:

MOSi =
∑
j∈J

1
|J |

· r ji =
∑
k∈K

nik
|J |

· k (1)

The MOS weights the opinion score k with nik
|J |

This weighting schema is not robust to noisy ratings
We define the ground-truth quality of stimulus i as:

Qi =
∑
k∈K

wik · k , (2)

where the weights wik are to be computed, taking into
account the noisy nature of the gathered data.
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Regularized Maximum Likelihood Estimation (RMLE) of
Quality

The weight wik can be assimilated to the actual probability of
scoring stimulus i with k , thus the Log likelihood function is:
LL(w) =

∑
i∈I
∑

k∈K nik · log(wik)

The classical MLE approach would yield the not robust
solution wki =

nik
|J |

We added a regularization term to the likelihood function to
account for noise
The regularization term penalizes not frequently chosen
opinion scores on the scale:

R(w) =
∑
i∈I

∑
k∈K

Cik · wik , (3)

where Cik = −log
(

nik
|J |

)
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Regularized Maximum Likelihood Estimation (RMLE) of
Quality

Definition

The weights wki yielding the RMLE estimation of the quality the
stimuli in I on the discrete quality scale K are the optimal solution
of the following problem:

max
w

[LL(w)− λ · R(w)]

s.t.
∑
k∈K

wik = 1 ∀i ∈ I (4)

Where λ = 1
2 · |I||K|

|J | is a regularization coefficient

7 / 25



Positional Bias Weights

A single overall bias might not be enough to highlight certain
peculiar behavior
The following behaviors might be observed in subjective test
on a discrete scale:

1 Positively biased annotators;
2 Negatively biased annotators;
3 Unary annotators;
4 Binary annotators;
5 Ternary annotators;
6 Adversary annotators;
7 Spammer annotators;
8 Competent annotators.

3, 4 and 5 suggest that a subject might prefer one or certain
opinion scores more than others
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Positional Bias Weights

We introduce µj
k as the systematic tendency of subject j ∈ J

to prefer the opinion score k over the others
We performed one-hot encoding of subject ratings to estimate
the value of µj

k :

R j
i (k) =

{
1 if k = r ji
0 otherwise

(5)

µj
k is estimated as:

µj
k =

∑
i∈I

(
R j
i (k)− wik

)
|I|

. (6)
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Positional Bias Weights

Note that it holds: ∑
k∈K

µj
k = 0 ∀j ∈ J (7)

Thus, some bias weights of a subject j are positive and others
are negative

if µj
k > 0, then subject j tends to prefer k as opinion score

if µj
k < 0, then subject j tends not to select k as opinion score

The overall bias of subject j ∈ J can also be estimated as:

bj =
∑
k∈K

k · µj
k . (8)
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Deriving the Scoring Model & the Subject Inconsistency

Previous approaches assume a priori a probabilistic scoring
model
Here, higher-level assumptions are made and a scoring model
is formally derived
Our idea: subjects unconsciously attribute a stochastic
attractiveness to each opinion score on the quality scale
and choose the one with the highest perceived
attractiveness
The attractiveness of each opinion score depends on:

The stimulus actual quality
The subject tendency to select that opinion score
Numerous stochastic and thus uncontrollable influence factors
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Definition of Attractiveness

Definition

The attractiveness of the opinion score k for the subject j when
rating the stimulus i is defined as:

U j
ik = wik + µj

k + θjik , (9)

where θjik is a random variable modeling the relevance of the effect
of all the influence factors.

In practice the distribution of θjik is unknown
Some mild assumptions on it are required to derive our scoring
model
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Modeling the Effect of Influence Factors (IF)

Let us denote by θjikf the relevance of the effect of the IF
f ∈ F
We assume that the subject is mainly influence by the IF with
the largest relevance, thus θjik = maxf ∈F θjikf
We further assume that the distribution of each random
variable θjikf has a heavy tail. Denoting by F j

ik(x) the unknown
cumulative probability distribution of any random variable
θjikf f ∈ F . We assume there exist two constants α|F| and
βj > 0 such that, ∀i ∈ I,∀j ∈ J ,∀k ∈ K:

lim
|F|→+∞

F j
ik

(
1
βj
x + α|F|

)|F|
= exp

(
−e−x

)
∀x ∈ R. (10)

βj is related to the probability distribution of IFs and thus to
the inconsistency of subject j
These assumptions do not really limit the model’s application
scope
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Deriving the Scoring Model

In practice, the number of IFs is very large
The following Theorem yields our scoring model:

Theorem

As the number of IFs tends to infinity, i.e., |F| → +∞, the
probability that subject j chooses opinion score k when rating
stimulus i is:

pjik =
eβj (wik+µj

k )∑
k∈K eβj (wik+µj

k )
, k ∈ K, j ∈ J , i ∈ I. (11)

Thus r ji is a |K|-class discrete random variable and theorem
provides its density
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Link Between βj & the Subject Inconsistency

The closer to 0 βj is, the more inconsistent is subject j
But βj alone might not fully capture all aspects of subject j
inconsistency
The inconsistency σ2

ij of subject j on the quality of stimulus i

is defined as the variance of r ji :

σ2
ij(β, µ,w) =

∑
k∈K

k2 · pjik −

(∑
k∈K

k · pjik

)2

(12)

The overall inconsistency of subject j is then:

σ2
j (β, µ,w) =

1
|I|
∑
i∈I

σ2
ij(β, µ,w) (13)
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βj Estimation

βj is estimated by performing a least square fitting of the
model’s variance to the observed variance of the ratings of
subject j
The observed variance is computed as:

s2
j = Var(Q − R j) (14)

where R j represents all the rating given by the subject j and Q
the recovered qualities of the stimuli.
βj is estimated as the value that minimizes the function l(βj)
defined as:

l(βj) =
(
s2
j − σ2

j (βj , µ,w)
)2 (15)

16 / 25



Results: RMLE Robustness To Synthetic Noise

The MOS of the clean dataset was considered as the
"reference" quality
A certain fraction (see x-axis) of the ratings were replaced by
random integers between 1 and 5
The RMSE between the reference quality and the one
recovered from the noisy dataset was computed
The smaller the RMSE values are, the better it is

17 / 25



Robustness to Noise

All subjects have a small probability to score inaccurately
Simulating noise caused for instance by fatigue or distraction

(a) VQEG-HD1 (b) VQEG-HD3

(c) VQEG-HD5 (d) Netflix Public dataset 18 / 25



Robustness to Noise

50% of the subjects are competent and the others not
Simulating the noise due for instance to stimuli complexity

(e) VQEG-HD1 (f) VQEG-HD3

(g) VQEG-HD5 (h) Netflix Public dataset 19 / 25



Robustness to Noise

Adding spammer annotators to the dataset

(i) NETF PUB (j) VQ-HD1

(k) VQ-HD3 (l) VQ-HD5
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Peculiar Behaviors Identification: Sureal vs Proposal

Experiments done on the Netflix Public datasets integrated
with the simulation of six peculiar behaviors
SUREAL and the proposed approach are well aligned in terms
of overall bias and inconsistency

(m) Subject overall bias (bj) (n) Subject overall inconsistency
(σ2

j (β, µ,w))

However, the proposed approach brings new insights into the
explanation of the source of the observed peculiarities
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Bias Weights Analysis

Figure: Subject bias weights (µj
k)

computed on the Netflix Public
dataset integrated with six simulated
peculiar subjects

Subject #10 favors the
higher end of the quality
scale
Subject #6 prefers the
quality scale extremes
Subject #7 seldom chooses
"excellent" without
compensating by selecting
"good”
Subject #14 seems a unary
annotator
The proposed approach can
perfectly highlight simulated
subjects with positional bias

22 / 25



Analysis of the Subject’s Inconsistency

Figure: SUREAL subject
inconsistency as function of the
recovered quality computed on the
Netflix Public dataset integrated
with six simulated peculiar subjects

Figure: Proposed model subject
inconsistency (σ2

j (β, µ,w)) as
function of the recovered quality
computed on the Netflix Public
dataset integrated with six simulated
peculiar subjects

Modeling higher accuracy of subjects at the quality scale
extremes
Automatically highlighting where a subject is inconsistent
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Conclusions

Results synthesis
RMLE is robust to a noise uniformly distributed among all
subjects or part of subjects
RMLE show lower robustness than other approaches to the
introduction of spanner annotators
The positional bias weights enable a more comprehensive
analysis of subjects behavior
The derived scoring model capture the higher accuracy of
subjects at the quality scale extremes

Open questions
Finding a numerically stable approach to fit the model to data
and thus estimate both stimuli quality and subjects
characteristics at once
Any other interesting future directions?
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