Subjective Media Quality Recovery from Noisy Raw Opinion Scores: A Non-Parametric Perspective

Andrés Altieri, Lohic Fotio Tiotsop, Giuseppe Valenzise

VQEG JEG-Hybrid

Dec 18, 2023

- A Non-parametric approach to measure the reliability of a rating given by a subject
- 2 The Entropy-based Subjective Quality Recovery (ESQR) algorithm
- 3 Computational results
- 4 Conclusions

Parametric vs Non-Parametric Approach

- Parametric approach: assume a scoring model f_{θ} , estimate parameters θ , and determine stimuli quality
- Our non-parametric approach: assess reliability of each rating, prioritizing reliable opinions to determine quality

Parametric approaches

- Try to explain the subject scoring behavior
- Make potentially restrictive assumption for stability
- Suffer under/over-fitting issues
- The parameter estimation process is usually computationally demanding
- Our Non-parametric approach
 - Greater robustness as no assumption is made
 - No risk of under/over-fitting the data
 - Efficiency, there is no optimization problem to solve
 - Do not explain the subject scoring process

Notation

- \mathcal{I} , a set of rated stimuli
- \mathcal{J} , a set of subjects
- $\mathcal{I}_j \subset \mathcal{I}$ the subset of the stimuli rated by the subject $j \in \mathcal{J}$
- J_i ⊂ J, the subset of subjects that rated the stimulus i ∈ I using a discrete scale in the range {1, ..., K}
- V_i the discrete random variable that describes noiseless opinion scores, on the quality of the stimulus $i \in \mathcal{I}$ in the range $\{1, ..., K\}$
- p_{V_i} , the probability mass function of V_i
- *R_{j,i}*, the discrete random variable modeling the score of the subject *j* for the stimulus *i* on a quality scale in the range {1,..,*K*}.
- $p_{R_{j,i}}$ the probability mass function of $R_{j,i}$.

Definition

The reliability $W_{j,i}$ of the rating $R_{j,i}$ of subject j on the quality of stimulus i is the following ratio:

$$W_{j,i} = -rac{1}{\log{(p_{V_i}(R_{j,i}))}}.$$
 (1)

- Note that an estimate of p_{V_i} is needed to compute $W_{j,i}$
- A non-parametric estimation of p_{V_i} will be discussed later
- Let's first motivate why $W_{j,i}$ measures how reliable is $R_{j,i}$

Motivation

Let us denote by

- $H(p_{R_{i,i}})$ the entropy of the distribution $p_{R_{i,i}}$
- D_{KL}(p<sub>R_{j,i}||p_{V_i}) denotes the Kullback–Leibler (KL) divergence between p_{R_{i,i}} and p_{V_i}
 </sub>

The average inability of subject j to provide repeated ratings on the quality of stimulus i can be measured as:

$$A_J = rac{1}{|\mathcal{I}_j|} \sum_{i \in \mathcal{I}_j} H(p_{R_{j,i}})$$

The average inability of subject j to rate stimulus i according to p_{V_i} can be measured as:

$$B_J = \frac{1}{|\mathcal{I}_j|} \sum_{i \in \mathcal{I}_j} D_{\mathsf{KL}}(p_{\mathsf{R}_{j,i}} || p_{V_i}).$$

Clearly, $A_J + B_J$ measures the overall unreliability of subject $j_{2,2,2}$

Motivation

Let us introduce the following statistic:

$$S_j(\mathcal{I}_j) = \frac{1}{|\mathcal{I}_j|} \sum_{i \in \mathcal{I}_j} W_{j,i}^{-1}.$$
 (2)

 The following proposition links W⁻¹_{j,i} to the overall subject unreliability

proposition

For each subject *j*, if there is a constant *c* such that $\operatorname{var}\left[W_{j,i}^{-1}\right] < c \ \forall i \in \mathcal{I}_j, \text{ then, as } |\mathcal{I}_j| \to \infty,$ $S_j(\mathcal{I}_j) \to (A_J + B_J)$

(3)

イロン スロン イヨン イヨン 三日

Motivation

- The average ¹/_{|I_j|} ∑_{i∈I_j} W⁻¹_{j,i} converges to the overall unreliability, but what about each single term?
- $W_{j,i}$ finds its theoretical explanation in information theory
- log (p_{Vi}(R_{j,i})) is the "self-information" contained in the event of choosing R_{j,i} as opinion score for the quality of stimulus i
- The less information the event brings, the more likely it was
- Hence W_{j,i} measures how unlikely and thus potentially noisy is the opinion scores R_{j,i} if the distribution of accurate ratings is PV_i

P_{V_i} Estimation

- P_{V_i} is not directly observable
- A set of noisy ratings that provides an estimate of each P_{Rj,i} is observed
- We performed a **non-parametric** estimation of P_{V_i}

$$\hat{p}_{V_i} = \sum_{j \in \mathcal{J}_i} \epsilon_{ij} \hat{p}_{R_{j,i}} \quad i \in \mathcal{I},$$
(4)

where

$$\epsilon_{ij} = \frac{|\hat{C}_j|}{\sum_{k \in \mathcal{J}_i} |\hat{C}_k|} \quad i \in \mathcal{I}, \quad j \in 1, 2, \dots, |\mathcal{J}_i|.$$
(5)

and \hat{C}_j is the overall Spearman Rank Order Correlation Coefficient (SROCC) between the ratings of subject j and those of all the other subjects

Subjective Quality Recovery

- If the exact P_{Vi} could be known, then the quality q_i of stimulus i would have been: q_i = f(P_{Vi}) = E_{PVi}
- But we only have a "not-sophisticated" estimate \hat{p}_{V_i} of P_{V_i}
- From our point of view, $\mathbb{E}_{\hat{p}_{V_i}}$ is not a very robust estimator of q_i
- We argue that a suitable estimator Q_i of the quality q_i can be obtained by taking into consideration also the reliability of each rating
- In particular, we define:

$$Q_i = g(\hat{p}_{V_i})$$

where g() depends on the introduced measure of reliability and will be defined on the next slides

Entropy-based Subjective Quality Recovery (ESQR)

- Our approach is said to be "entropy-based" because W_{j,i} is linked to the subject reliability trough the concept of entropy
- Our idea: giving more importance to reliable ratings in the estimator of the ground-truth quality estimator
- An estimate $\hat{W}_{j,i}$ of $W_{j,i}$ can be computed using \hat{p}_{V_i}

Definition

The weight/importance of the rating $R_{j,i}$ of subject j for stimulus i is defined as:

$$\omega_{ij}(\hat{\boldsymbol{p}}_{V_i}) = \frac{\hat{W}_{j,i}}{\sum_{k \in \mathcal{J}_i} \hat{W}_{k,i}}.$$
(6)

Entropy-based Subjective Quality Recovery (ESQR)

Definition

The ESQR estimator of the quality of the stimulus i is:

$$Q_i = g(\hat{p}_{V_i}) = \sum_{j \in \mathcal{J}_i} \omega_{ij}(\hat{p}_{V_i}) R_{j,i}$$

ESQR Algorithm

Algorithm 1: Entropy based Subjective Quality Recovery (ESQR)

Data: $R_{j,i},\;i\in\mathcal{I}_j;\;j\in\mathcal{J}$ // stimuli i, subjects j

- 1 $C_{jk} \leftarrow \text{SROCC}(R_{j,.}, R_{k,.})$ $j, k \in \mathcal{J}$ // pairwise subject scores correlation
- 2 $\hat{C}_j \leftarrow \text{FZT}^{-1}\left(\frac{\sum_{k \in \mathcal{J}} \text{FZT}(C_{jk})}{|\mathcal{J}|}\right) \quad j \in \mathcal{J} \quad // \text{ overall subject-to-subject correlation}$

3
$$\epsilon_{ij} \leftarrow \frac{|\hat{C}_j|}{\sum_{k \in \mathcal{J}_i} |\hat{C}_k|}$$
 $i \in \mathcal{I}; \quad j \in \mathcal{J}_i \quad // \text{ importance of the ratings of subject } j \text{ in the } P_{V_i} \text{ estimation}$

- $\begin{array}{ll} \textbf{4} ~ \hat{p}_{V_i} \leftarrow \sum_{j \in \mathcal{J}_i} \epsilon_{ij} p_{R_{j,i}} ~~i \in \mathcal{I} ~~ // ~\text{estimate the} \\ ~~ \text{distribution} ~ P_{V_i} \end{array}$

$$\mathbf{6} \ Q_i = \frac{\sum_{j \in \mathcal{J}_i} \bar{W}_{j,i} R_{j,i}}{\sum_{k \in \mathcal{J}_i} \bar{W}_{k,i}} \quad i \in \mathcal{I} \quad // \text{ estimate the quality}$$
Result: $Q_i, \quad i \in \mathcal{I}$

FZT stands for Fisher Z-Transform

Confidence Interval of the Recovered Quality

- We observed through simulation that the distribution of Q_i is well approximated by a Gaussian one if $|\mathcal{J}_i| \ge 20$
- Note that this does not mean that we are making assumption on the subject scoring behavior
- An unbiased estimate of the standard deviation of the estimator Q_i is:

$$\sigma_{Q_i} = \sqrt{\frac{|\mathcal{J}_i|}{|\mathcal{J}_i| - 1} \sum_{j \in \mathcal{J}_i} \omega_{ij} (R_{j,i} - Q_i)^2}.$$
 (7)

■ The 95% CI of the recovered quality of stimulus *i* is:

$$\mathsf{Cl}_{Q_i} = Q_i \pm 1.96 \frac{\sigma_{Q_i}}{\sqrt{|\mathcal{J}_i|}}.$$
(8)

15/23

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Table: **Uncertainty of quality estimates**: Comparison of the size of CIs estimated by the different quality recovery approaches. Percentages indicate relative size of the CIs with respect to MOS CIs.

Methods	AVG CI SIZE					
	NETF PUB	VQ-HD1	VQ-HD3	VQ-HD5		
MOS	0.509 ()	0.493 ()	0.565 ()	0.575 ()		
BT500	0.515 (+1.18%)	0.613 (+24.34%)	0.586 (+3.72%)	0.575 (+0.00%)		
ZREC	0.417 (-18.07%)	0.437 (-11.36%)	0.458 (-18.94%)	0.475 (-17.39%)		
SUREAL	0.445 (-12.57%)	0.459 (-6.90%)	0.481 (-14.87%)	0.489 (-14.96%)		
RMLE	0.453 (-11.00%)	0.417 (-15.42%)	0.472 (-16.46%)	0.483 (-16.00%)		
ESQR	0.355 (-30.26%)	0.361 (-26.77%)	0.436 (-22.83%)	0.439 (-23.65%)		

Results: Accuracy in Predicting Uncertainty

- We simulated ratings in a way that the ground-truth CI (gtCI) of each stimulus is known
- We then used each method m to estimate the (gtCI), yielding $\hat{C}I_m$
- Two indexes to measure CI prediction accuracy
 - Δ^m the average distance between the centers of gtCl and $\hat{C}l_m$
 - ρ^m the average ratio between the sizes of gtCl and \hat{Cl}_m
- Clearly one wants Δ^m close to 0 and ρ^m close to 1

Table: CI prediction accuracy

Method	MOS	BT500	ZREC	SUREAL	RMLE	ESQR
Δ^m	0.127	0.062	0.058	0.051	0.087	0.056
ρ^{m}	1.470	1.263	1.242	1.242	1.256	0.979

ZREC, SUREAL and ESQR better predict the CI center

ESQR better predicts the CI size

Results: Robustness to Noise

All subjects have a small probability to score inaccuratelySimulating noise caused for instance by fatigue or distraction

Results: Robustness to Noise

Adding spammer annotators to the dataset

Results: Effectively Measuring the Importance of a Rating

- Importance of each rating as computed by SUREAL (left) and ESQR (right) for the PVSs in the Netflix Pub dataset
- The ESQR measure of importance can:
 - highlight cases where subjects #7 is still reliable
 - highlight cases where subjects #17 or #23 are unreliable
 - treat all subjects equally when they choose the same opinion as in the case of stimulus #19

Results: ESQR & Prior Art

- We noticed as expected that, the ESQR output is strongly aligned to that of existing quality recovery algorithms in general
- There are however cases where assumptions made by a specific method might be violated yielding a significant difference with ESQR

Figure: Example of stimulus from the Netflix Pub dataset on which ESQR and the MOS differ significantly

Figure: Comparing the output of SUREAL to that of ESQR on the MovieLens 1M dataset (Crowdsourcing) $(\Box) + (\Box) + ($

Conclusions

Results synthesis

- ESQR recovers a subjective quality prone to lower uncertainty
- ESQR is robust to a noise uniformly distributed among all subjects
- ESQR competes with SUREAL and ZREC in terms of robustness to the introduction of spanner annotators
- ESQR effectively weights the importance of individual ratings
- ESQR differs from prior approaches mainly at the quality scale extremes

Open questions

- How to generalize ESQR to cases where pairwise correlations cannot be computed?
- How to account for the ordinal nature of the quality scale when measuring reliability?

Thanks for your attention