Proposal of solution for problems of hybrid - perceptual bitstream project

NTT
Keishiro Watanabe
Jun Okamoto

2007/9/13
Introduction

The demand for high-reliability, light-weight objective video quality assessment is increasing. Therefore, the result of the hybrid perceptual / bitstream project is urgently required for providing rapid standardization in the industry.

However, there are specific problems caused by using bitstream information in the hybrid perceptual / bitstream project.

In our documents, NTT shows two proposals for those problems.
Logic structure of our three documents

overview of two problems and solutions

“Proposal of solution for problems of Hybrid – Perceptual Bitstream Project” (Document 1)

Proposal 1:
Input information of P.NAMS (Document 2)

Proposal 2:
Output information of bitstream analyzer (Document 3)
The scope of J.bitvqm studied in ITU-T SG9 should include the perceptual / bitstream model (FR, RR, NR) and the scope of P.NAMS studied in ITU-T SG12 should include the parametric packet layer and bitstream (w/o PVS) model.

- Main purpose of P.NAMS (under consideration) will be to assess video quality for in-service quality monitoring by using parametric bitstream information without decoding.
- the scope of J.bitvqm assumes to use both PVS and bitstream information
Discussion (2 - 2/2)

The detail of proposal 1

<table>
<thead>
<tr>
<th></th>
<th>Parametric packet-layer model</th>
<th>Parametric bit-stream-layer model</th>
<th>Hybrid model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average quality</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Packet-loss pattern</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Content dependence</td>
<td>-</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Decoder characteristics</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Display characteristics</td>
<td>-</td>
<td>-</td>
<td>△</td>
</tr>
</tbody>
</table>
Discussion (3 - 1/6)

Proposal 2

We propose to allow using all syntax information included in an elementary stream as the output information of a bitstream analyzer (assumed to use P.NAMS mode B in previous proposal), which is defined in the standardized recommendation of a coding method.

- The estimation accuracies of objective video quality assessments, especially the NR perceptual / bitstream model and parametric bitstream (w/o PVS) model, will be not enough because these models cannot use the information of a source video.

- In principle, we can get syntax information in an elementary stream of a coded video sequence from a bitstream analyzer. That information has a strong correlation with the characteristics of a source video scene and will have a large influence on subjective video quality.
Discussion (3 - 2/6)

The verification of solution 2

Overview

- Subjective video quality assessment of coding distortion of HD H.264
- Extraction of some ES syntax information from coded H.264 bitstream
- Comparison of subjective video quality, ES layer syntax information, and bit-rate.

Construction of two parametric bitstream models for H.264 coding distortion and verification of the level of estimation accuracy of parametric bitstream model
Creation of coded video sequences

- H.264 high profile
 - HD: 1080i, 59.94 fields/s
- Bit-rate: 20, 18, 16, 14, 12, 10, 8, 6, 4, 2 (Mbps)
- 8 video sequences from ITU-R BT.1210 (10 seconds)
Condition of subjective video quality assessment

- Grading scale: DMOS (DSIS method)
- Number of subjects: 24 (12 men and 12 women)
- Viewing condition:
 - Monitor: Sony 32 inch CRT
 - Viewing distance: 3H
 - Illumination Intensity: 200lx
Discussion (3 - 5/6)

DMOS (predicted by using ES layer parameters) vs DMOS (experiment)

Correlation coefficient = 0.97
RMSE = 0.32
Discussion (3 - 6/6)

DMOS (predicted by using bit-rate) vs DMOS (experiment)

Correlation coefficient = 0.88
RMSE = 0.61
We propose to use all syntax information in elementary stream, which can consider scene characteristics (coding difficulty) as the output of bitstream analyzer.
Our proposals

(1) We proposed that the scope of P.NAMS mode A and B. We also showed that tentative relationship of the scope of P.NAMS, J.bitvqm, and hybrid perceptual / bitstream project.

(2) All syntax information included in an elementary stream should be used as the output of a bitstream analyzer because it contains information that can consider scene dependent factors.
Appendix

Extraction of ES layer syntax information from coded H.264 bitstream

Captured IP packet stream

MPEG2 transport stream

H.264 Elementary stream (ES)

H.264 syntax information