The large scale dataset
Packet loss simulations

Enrico Masala
Politecnico di Torino, Italy
enrico.masala@polito.it

Contribution to VQEG JEG-Hybrid session in Santa Clara, Feb 2015
Context and Aim

- Joint work with
 - Glenn Van Wallendael
 - Marcus Barkowsky

- Large dataset of 59,520 HEVC-encoded video sequences (details in [1], already presented in previous meetings)
 - 5 metrics available: PSNR, SSIM, VIF, VQM, PVQM
 - Total video quality and frame-level granularity (for each one of the 250 frames)

- What is the effect of packet losses on the objective video quality?
Methodology

1. Simulate reasonable packet losses affecting the video sequences
 - Use of the publicly available HEVC robust decoder presented in previous meetings [2][3] to create PVS
 - Note: this decoder, by construction, does not cause temporal misalignment between the processed video sequence (PVS) and the original one (SRC)
 - Use of packet loss traces with reasonable parameters

2. Compute the objective quality measures:
 - PSNR, SSIM, VIF, VQM, PVQM

3. Identify interesting cases and unexpected behaviors to be investigated further
Parameters

- Loss traces (generated by Glenn) using a 2-state Markov model with good and bad state
 - Packet loss rate: 0.5% and 1%
 - Average burst length: 1, 1.5, 2
 - Total: 25 realization of the loss traces

- Each event affects one slice of the source sequence. Depending on the encoding parameters of the sequence, the affected area can be:
 - The whole frame
 - A slice with a fixed number of macroblocks
 - A slice with a maximum number of bytes
Current Status

- Not all combinations of resolution, coding parameters and losses have been covered yet due to complexity.
- A priority list has been decided (see wiki [4]):

 - **Priority**: Green: high Silver: medium Transparent: low
 - **Rationale**: try to cover extreme values first, then intermediate values especially w.r.t. rate.

<table>
<thead>
<tr>
<th>Param/Values</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIDTH</td>
<td>960</td>
<td>1280</td>
<td>1920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOPTYPESIZE</td>
<td>GOP2</td>
<td>GOP4</td>
<td>GOP8</td>
<td>LDGOP4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RATECONTROL_QP</td>
<td>26</td>
<td>32</td>
<td>38</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RATECONTROL_FRAME_kbit/s</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
<td>4000</td>
<td>8000</td>
<td>16000</td>
</tr>
<tr>
<td>RATECONTROL_LCU_kbit/s</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
<td>4000</td>
<td>8000</td>
<td>16000</td>
</tr>
<tr>
<td>REFRESH</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTRAPERIOD</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLICEARGUMENT</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Current Status and Conclusions

- Status:
 - Resolution 960x544
 - all 19,840 sequences have been subject to all loss traces
 - total 496,000 objective video quality values for each metric (PSNR, SSIM, VIF, VQM, PVQM) with frame-level granularity
 - Resolution 1280x720 and 1920x1080
 - All high-priority combinations tested until now
 - Total 22,500 combinations done, more on the way

- Freely available at [5][6] (links also on the wiki pages)
- We hope to investigate results soon to get a first idea of how the considered metrics react to losses
 - Anybody is welcome to join!
References

