QUALITY EVALUATION OF DIFFERENT CODING STANDARDS FOR FULL HD AND ULTRA HD VIDEOS

Naeem Ramzan

Outline

- Motivation
- Codecs and configurations
- Dataset
- Test
 - Methodology
 - Session
 - Environment
- Results
- Conclusions
Codecs

- JCT-VC (MPEG and ITU)
- H.264/MPEG4 (AVC)
- H.265/MPEGH (HEVC)
- WebM data format
 - VP8
 - VP9
- Comparison of three latest video encoders subjectively and objectively
Encoding

- **Standard codecs**
 - JM 18.6 (AVC)
 - HM 16.0 (HEVC)

- **Configurations**
 - Random access
 - GOP size 8
 - Intra period 1 sec.

- **VP9**
 - IntraPeriod2 1 sec.

Table: Configuration Codec

<table>
<thead>
<tr>
<th>Configuration/Codec</th>
<th>AVC</th>
<th>HEVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder</td>
<td>JM 18.6</td>
<td>HM16.0</td>
</tr>
<tr>
<td>Profile</td>
<td>High</td>
<td>Main</td>
</tr>
<tr>
<td>Reference Frames</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R/D Optimization</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Motion Estimation</td>
<td>EPZS</td>
<td>TZ search</td>
</tr>
<tr>
<td>Search Range</td>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>GOP</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Hierarchical Encoding</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Temporal Levels</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Intra Coding</td>
<td>1 sec</td>
<td>1 sec</td>
</tr>
<tr>
<td>Deblocking Filter</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Coding Unit Size/Depth</td>
<td>-</td>
<td>64/4</td>
</tr>
<tr>
<td>Transform Unit Size (Min/Max)</td>
<td>-</td>
<td>4/32</td>
</tr>
<tr>
<td>8x8 Transform</td>
<td>Enabled</td>
<td>-</td>
</tr>
<tr>
<td>Internal Bit Depth</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Rate Control</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

```
--good --cpu-used=0 --threads=0 --profile=0
--aq-mode=0
--fps=< FrameRate >
--end-usage=3 --cq-level=< QP >
--kf-max-dist=< IntraPeriod > --kf-min-dist=< IntraPeriod >
--minsection-pct=0 --maxsection-pct=2000
--auto-alt-ref=1
--arnr-maxframes=7 --arnr-strength=5
--codec=vp9 -v -t 0 -w < Width > -h < Height > -p 2
```
Dataset

- **HD (1920x1080)**
 - SVT15
 - UnderBoat1

- **UHD (3840x2160)**
 - Traffic Flow
 - Tree Shade
Test - Methodology

- Double Stimulus Impairment Scale (DSIS)
Test - Session

- ITU BT.500
 - One test session should not last more than 30 minutes
 - Alternate as many content as possible
- 10s sequences – requires a lot of attention for evaluation
 - Test sessions (4 sequences * 4 bitrates * 3 codecs)
 - Each session followed by resting phase
- Further details
 - Randomization to effect possible effect of content presentation order
 - Never the same content in same presentation order
 - Dummy sequences
 - Reference vs. reference
Test - Environment

- PC sever
 - SSD based solution to read and play ultra HD sequences (~400 MB/sec)
 - Alternate as many content as possible
- 55” Sony 4K TV (consumer grade)
 - Post processing disabled/neutralised
- ITU-R BT.500 complaint environment
 - Mid grey walls
 - No direct light, etc
- Pre-test screening
 - Snellen + Ishiara chart
- Subjects
 - 20 (6F/14M) of average age 27 years
Results – SVT15

- HEVC vs AVC
- VP9 vs AVC
- HEVC vs VP9
Results – UnderBoat1

- HEVC vs AVC
- VP9 vs AVC
- HEVC vs VP9
Results – Traffic Flow

- HEVC vs AVC
- VP9 vs AVC
- HEVC vs VP9
Results – Tree Shade

- HEVC vs AVC
- VP9 vs AVC
- HEVC vs VP9
Conclusions

- Comparison for broadcasting scenario
- Subjective and objective evaluation
- Variability in codecs performance
 - Depending on coding and contents
- AVC and VP9 have comparable performance
- HEVC and VP9 performance comparison
 - HEVC outperforms VP9 for low to high bitrates

- Future directions
 - Verify the results with more test sequences
 - Comparison of HEVC and AVC in Internet streaming