Performance Evaluation of MV–HEVC

Vittorio Baroncini, FUB ;
Naeem Ramzan, UWS
Karsten Müller, HHI
Shinya Shimizu, NTT
Objective

- Verification test for the HEVC–based coding of multi–view video as compared to Simulcast HEVC and AVC multi–view coding.
Used Encoders

- MVC: AVC–based multiview video coding (non–base view is coded using inter–view prediction)
- Simulcast HEVC: each view is coded independently
- MV–HEVC: HEVC–based multiview video coding (non–base view is coded using inter–view prediction)
Common Conditions for Encoding

- Inter-view coding structure
 - 2 view case: left–right (in coding order)
 - I–P inter-view prediction for MVC and MV–HEVC

- Temporal prediction structure: GOP 8, intra every 24 frames (random access at ~1sec)

- Full resolution texture coding

- Codec software: JM v18.6 for MVC, and 3D–HTM v14.1 for Simulcast HEVC and MV–HEVC
Test Sequences

<table>
<thead>
<tr>
<th>Seq. ID</th>
<th>Name of Test Sequence</th>
<th>View number (left–right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S03</td>
<td>Undo_Dancer</td>
<td>3–5</td>
</tr>
<tr>
<td>S04</td>
<td>GT_Fly</td>
<td>5–3</td>
</tr>
<tr>
<td>S13</td>
<td>Band06</td>
<td>0–1</td>
</tr>
<tr>
<td>S14</td>
<td>BMX</td>
<td>0–1</td>
</tr>
</tbody>
</table>
Encoder Configurations

<table>
<thead>
<tr>
<th>Test Sequence</th>
<th>QP values (Independent view/dependent view)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MVC</td>
</tr>
<tr>
<td></td>
<td>R1</td>
</tr>
<tr>
<td>S03:Undo_Dancer</td>
<td>23/25</td>
</tr>
<tr>
<td>S04:GT_Fly</td>
<td>23/24</td>
</tr>
<tr>
<td>S14:BMX</td>
<td>22/24</td>
</tr>
</tbody>
</table>
Results

PSNR analysis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S03: Undo_Dancer</td>
<td>R1</td>
<td>9330.47</td>
<td>38.82</td>
<td>9276.81</td>
<td>38.79</td>
<td>6547.42</td>
<td>39.09</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>4175.72</td>
<td>35.82</td>
<td>4018.01</td>
<td>35.90</td>
<td>2316.68</td>
<td>35.70</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>2216.05</td>
<td>33.39</td>
<td>1836.04</td>
<td>33.36</td>
<td>1058.98</td>
<td>33.22</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>1189.35</td>
<td>31.05</td>
<td>850.69</td>
<td>31.06</td>
<td>497.01</td>
<td>30.94</td>
</tr>
<tr>
<td>S04: GT_Fly</td>
<td>R1</td>
<td>8003.76</td>
<td>40.22</td>
<td>7437.65</td>
<td>40.25</td>
<td>5071.39</td>
<td>40.50</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>3771.89</td>
<td>37.83</td>
<td>3239.10</td>
<td>37.82</td>
<td>2110.64</td>
<td>38.07</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>1964.56</td>
<td>35.46</td>
<td>1517.04</td>
<td>35.62</td>
<td>833.49</td>
<td>35.48</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>1239.31</td>
<td>33.45</td>
<td>732.18</td>
<td>33.46</td>
<td>465.55</td>
<td>33.77</td>
</tr>
<tr>
<td>S13: Band06</td>
<td>R1</td>
<td>9540.44</td>
<td>40.09</td>
<td>8599.87</td>
<td>40.14</td>
<td>6477.06</td>
<td>40.10</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>4451.53</td>
<td>38.07</td>
<td>4059.04</td>
<td>38.15</td>
<td>2832.68</td>
<td>38.21</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>2482.01</td>
<td>35.95</td>
<td>2023.38</td>
<td>35.96</td>
<td>1394.22</td>
<td>36.07</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>1531.70</td>
<td>33.75</td>
<td>1036.08</td>
<td>33.75</td>
<td>716.55</td>
<td>33.88</td>
</tr>
<tr>
<td>S14: BMX</td>
<td>R1</td>
<td>8106.66</td>
<td>40.68</td>
<td>4882.07</td>
<td>40.68</td>
<td>3750.15</td>
<td>40.60</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>4340.45</td>
<td>39.19</td>
<td>2430.42</td>
<td>39.20</td>
<td>1784.74</td>
<td>39.10</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>2583.66</td>
<td>37.29</td>
<td>1328.58</td>
<td>37.28</td>
<td>950.88</td>
<td>37.20</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>1574.70</td>
<td>35.00</td>
<td>772.22</td>
<td>35.09</td>
<td>537.46</td>
<td>35.03</td>
</tr>
</tbody>
</table>
Results

Subjective test

GT_Fly

BMX

MOS

bitrate [kbps]

MVC
Simulcast HEVC
MV-HEVC

MOS

bitrate [kbps]

MVC
Simulcast HEVC
MV-HEVC
Results

Bitrate Savings

<table>
<thead>
<tr>
<th>Test Sequence</th>
<th>Bit rate difference [%]</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(MV–HEVC – MVC) / MVC</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
<td>Average</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
</tr>
<tr>
<td>S03: Undo_Dancer</td>
<td>-29.8</td>
<td>44.5</td>
<td>52.2</td>
<td>-58.2</td>
<td>-46.2</td>
<td>-29.4</td>
<td>42.3</td>
<td>-42.3</td>
<td>-41.6</td>
<td>-38.9</td>
</tr>
<tr>
<td>S04: GT_Fly</td>
<td>-36.6</td>
<td>44.0</td>
<td>57.6</td>
<td>-62.4</td>
<td>-50.2</td>
<td>-31.8</td>
<td>34.8</td>
<td>-45.1</td>
<td>-36.4</td>
<td>-37.0</td>
</tr>
<tr>
<td>S13: Band06</td>
<td>-32.1</td>
<td>36.4</td>
<td>43.8</td>
<td>-53.2</td>
<td>-41.4</td>
<td>-24.7</td>
<td>30.2</td>
<td>-31.1</td>
<td>-30.8</td>
<td>-29.2</td>
</tr>
<tr>
<td>S14: BMX</td>
<td>-53.7</td>
<td>58.9</td>
<td>63.2</td>
<td>-65.9</td>
<td>-60.4</td>
<td>-23.2</td>
<td>26.6</td>
<td>-28.4</td>
<td>-30.4</td>
<td>-27.1</td>
</tr>
<tr>
<td>Average</td>
<td>-38.1</td>
<td>46.0</td>
<td>54.2</td>
<td>-59.9</td>
<td>-49.5</td>
<td>-27.3</td>
<td>33.5</td>
<td>-36.7</td>
<td>-34.8</td>
<td>-33.1</td>
</tr>
</tbody>
</table>
Conclusions

- MV-HEVC codec achieves comparable quality relative to the Simulcast HEVC codec with approximately 30% less bitrate or the MVC codec with approximately 50% less bitrate, on average.
Reference