A dataset of head and eye movements for 360° images

Yashas Rai, Jesús Gutiérrez, Patrick Le Callet

Image, Interaction, Perception Group (IPI)
Laboratoire des Sciences du Numérique de Nantes (LS2N)
Université de Nantes
Introduction and motivation

• Visual attention allows to know the important regions of the scene for the observers.

• Proxy for visual fidelity widely used for 2D and 3D content
 • Coding and transmission: protection based on saliency.
 • Quality evaluation:
 • Weighting most important regions.
 • Consider artistic intentions.

Introduction and motivation

• Even more important for 360 content: Not everything may be seen
 • Tile-based coding and streaming, non-uniform quality streaming...
 • Evaluation of quality using head-motion data: weighting the metrics.

• Proposed dataset containing exhaustive data of **head** and **eye** movements.

• Publication of the dataset:
 • Paper in **MMSys 2017**.
 • **ICME 2017 Grand Challenge**: Encouraging participants to submit computational models for saliency

Dataset description

• **60 images** saved in equi-rectangular format.
• Raw **eye+head** tracking data:
 • Rotational angles.
 • Translational movements.
 • [2x2] Eyes movimiento within the viewport projection.
 • Time stamp of capture and record.
• Processed data:
 • Head saliency maps.
 • Head-Eye saliency maps.
 • Scan-paths.
• Tools for processing the data.
Subjective experiment

• Test stimuli
 • 98 omnidirectional images:
 • 60 released in the dataset: captured with a Ricoh Theta S camera.
 • 38 images from Flicker by professionals (CC)
 • Resolutions from 5376x2688 to 18332x9166 (equi-rectangular).
 • Wide coverage of characteristics:
 • Indoor: small rooms and wide halls.
 • Outdoor: natural landscapes and cityscapes.
 • People.
Subjective experiment

• Equipment:
 • HMD Oculus Rift DK2
 • Horizontal and vertical FoV: 100°
 • 1920 x 1080 resolution.
 • SMI Eye-tracker
 • Binocular eye-tracking at 60Hz.

• Observers:
 • 63 (24 females / 39 males).
 • Average age 30 (from 19 to 52).
 • 40 observers per image.
 • Expertise: 32/63 used HMD less than 2 times, 8 experts.

• Execution of the test:
 • Free-viewing: “view as naturally as possible”.
 • Each stimulus: 25 seconds (6 seconds between stimulus).
 • 35 minutes + 5 minutes pause.
Processing the results

• Classification of gaze data into fixations and saccades.

• Projection Formats
 • Equi-rectangular projection
 • Representation and distribution.
 • Rectilinear projection
 • Rendered in view-port.
 • Eye-data capture.
 • Sphere-map projection
 • Computing Fixations.
 • Comparing two saliency maps.
Scan-path data
Saliency maps

- Original equi-rectangular image
- Saliency map from head+eye movements
- Saliency map from head movement considering entire viewport
- Saliency map from head movement + Gaussian at the center of viewport
Some statistical results

- Comparison of head vs. head+eye saliency maps:
 - Poor correlation between head-only and head+eye saliency maps
Some statistical results

• Eye-movement data
 • Do people really look at the centre?
 • The peak is offset by 14-16 degrees from the centre
Some statistical results

- Scanning strategies: frequency of fixations in accordance to the elevation (pitch) angle and the azimuthal (yaw) angle.
Some statistical results

• Speed of exploration:
 • Explored area of the sphere vs. time.

By image type

By observer type
A dataset of head and eye movements for 360° images

Yashas Rai, Jesús Gutiérrez, Patrick Le Callet

Image, Interaction, Perception Group (IPI)
Laboratoire des Sciences du Numérique de Nantes (LS2N)
Université de Nantes