Impacts of internal HMD Playback Processing on Subjective Quality Perception

VQEG meeting March 2019

Frank Hofmeyer, Stephan Fremerey, Thaden Cohrs, Alexander Raake

Audiovisual Technology Group (AVT), Technische Universität Ilmenau (Germany)
Motivation
Scope

- Various factors influencing 360° video QoE
- Studies on subjective & objective quality evaluation for 360° videos
- Some studies on impacts of framerate for traditional 2D videos
- Important: How smooth are motions appearing to the user?
- Hypothesis: Smoothness important for high subjective quality
- Key questions:
 a) Influence of internal playback processing of HMD on displayed content?
 b) Use motion interpolation (MI) for improving 360° QoE?
 c) If yes: which algorithm to use to achieve higher QoE? Content-dependency?
Experimental Setup & Test Method – Flicker Test (1)

• Key question: Influence internal playback processing on content shown?
• Refresh rate Vive Pro = 90 Hz
• Effect of 30 fps (25/50/60/90 fps) 360° content playout?
• SteamVR installed on fresh VR PC
• Vive Pro considered as blackbox

→ Influence of 360° video player
 – GoPro VR player
 – Virtual Desktop
 – Whirligig
Experimental Setup & Test Method – Flicker Test (2)

- On test tool developed:
 - Flicker test sequences
 - Sensor hardware
- Flicker test sequences: Alternating black/white frames
 - Uneven frames: white
 - Even frames: black
 - 3840x2160 pixels resolution
- Rendered in 25/30/50/60/90 fps, ffmpeg, libx265 encoder (CRF=0)
Experimental Setup & Test Method – Flicker Test (3)

- Analog frontend: photodiode, transimpedance amplifier + buffer
- Photodiode's spectral range adapted to human eye
- Connected to Oscilloscope + placed above HMD's display
- Black/White frame changes visible on oscilloscope
Results Flicker Test (1)

- HMD: HTC VIVE Pro
- Player: Whirligig
- Framerate: 90 fps

- No dropped frames
- Very smooth motion
- No stuttering
- No interpolation pattern
Results Flicker Test (2)

- HMD: HTC VIVE Pro
- Player: VD
- Framerate: 90 fps

✓ No dropped frames
✓ No interpolation pattern
✓ 25, 30, 50, 90 fps same as Whirligig
✓ Less GPU + CPU power than e.g. Whirligig (almost half)
Results Flicker Test (3)

- HMD: HTC VIVE Pro
- Player: GoPro VR Player
- Framerate: 90 fps

- Dropped frames
- Strong stuttering
- No regular pattern
Results Flicker Test (4)

- HMD: HTC VIVE Pro
- Player: Whirligig
- Framerate: 25 fps

- No dropped frames
- Visible stuttering
- Interpolation pattern recognizable
Results Flicker Test (5)

Summary

- Recommendations for smooth playout:
 - Use 90 fps 360° content
 - Use Whirligig, Virtual Desktop or another 360° player
 - We avoid usage of GoPro VR Player
 - Avoid playback of 25 fps 360° content
Experimental Setup & Test Method – Subjective Test (1)

- Influence framerate on 360° video quality? → Lack HFR 360° content
- MI for improving QoE?
 - Which MI methods for 360° videos?
- Content selection (20 s)
 - ERP (3820x1920 px.), ffmpeg 4.1, libx265 (CRF=0)
 - Training: 1 CGI content (Moon), 30/90 fps
 - Part I: 1 CGI content (Starfield), 25/30/50/60/90 fps
 - Part II: 4 contents, 30 fps source + 90 fps interpolated (various MI algorithms)
- Wide range of complexity/motion → Mostly "stuttering-affected" videos
Experimental Setup & Test Method – Subjective Test (2)

CGI contents used

Real contents used

SI/TI values of contents
Experimental Setup & Test Method – Subjective Test (3)

- ACR for training + part I \rightarrow overall quality
- PC in part II
- MI algorithms part II:
 - *Butterflow* (cf. [But19])
 - *ffmpeg* blend frames
 - *ffmpeg* MCI (Motion Compensated Interpolation)
- Subjective test, 12 video expert viewers, randomized playlists

Pre-screening (vision tests, forms) (5 min) \rightarrow Training session (ACR) (3 min) \rightarrow Part I (5 PVSs, ACR) (6 min) \rightarrow Part II (24 PVSs, PC) (30 min) \rightarrow Questionnaire (5 min)
Experimental Setup & Test Method – Subjective Test (4)

- Test method part II: Show participants 2 consecutive videos
- Ask for preferred video
- Answer "equal" also possible
- Source video: 30 fps
- Interpolated video: 90 fps

<table>
<thead>
<tr>
<th>HRC number</th>
<th>Video 1</th>
<th>Video 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRC001</td>
<td>Source (30 fps)</td>
<td>Butterflow (90 fps)</td>
</tr>
<tr>
<td>HRC002</td>
<td>Source (30 fps)</td>
<td>Blend (90 fps)</td>
</tr>
<tr>
<td>HRC003</td>
<td>Source (30 fps)</td>
<td>MCI (90 fps)</td>
</tr>
</tbody>
</table>
Results Subjective Test – Training

- "Moon" sequence
- Quality difference between 30 + 90 fps clearly visible
- Significant in spite of low number of subjects
Results Subjective Test – Part I

- "Starfield" sequence
- Difference in quality for 25/30/50/60/90 fps clearly visible
Results Preference Subjective Test – Part II (1)

HRC001: Source video vs. Butterflow
- Butterflow interpolated video always preferred over source video
- SRC 2: Difference not so clearly visible → slow motion
- SRC 3 + 4: Clear preference for interpolated video
- SRC 5: Fast + sudden movements in video → MI evoking mosquito artifacts → Reference video often preferred
Results Preference Subjective Test – Part II (2)

HRC002: Source video vs. Blend

- MI algorithm "Blend" not good results
- Blending leading to blurred images → reference preferred or pair rated as equal
- Interpolation not leading to significant better quality
Results Preference Subjective Test – Part II (3)

HRC003: Source video vs. MCI

- SRC 3-5: Clear preference for interpolated video
- SRC 2: Difference not clearly visible, slow camera movements
- SRC 5: Probably MCI is better suitable for fast movements than butterflow → higher number of preferences
Conclusions

• Different effects of interpolation patterns on playback clearly visible
• General preference of 90 fps over 30 fps content
• Interpolation of 30 fps to 90 fps generally improving quality
• Fast movement: MCI preferred over butterflow
• Medium movement: butterflow slightly preferred over MCI
• ffmpeg "blend" not recommendable
• CGI sequences publicly available

https://github.com/Telecommunication-Telemedia-Assessment/360_testcontent
Questions?
References

[But19] https://github.com/dthpham/butterflow

