nofu – A Lightweight No-Reference Pixel Based Video Quality Model for Gaming Content.

Steve Göring, Rakesh Rao Ramachandra Rao, Alexander Raake;
Audiovisual Technology Group, Technische Universität Ilmenau, Germany;
Email: [steve.goering, rakesh- rao. ramachandra-rao, alexander.raake]@tu-ilmenau.de

based on QoMEX 2019 paper: https://bit.ly/31i0jcZ

October 16, 2019
Motivation – Gaming Streams

- beside classical video streams → gaming content:
 - e.g. Youtube Gaming, Twitch, ...

- gaming videos →
 - additional requirements / properties: Zadtootaghaj et al. [9]
 - live streaming, low delay, low stalling,
 - high video quality, cgi content, streaming technology

- focus on video quality of gaming streams
 → gaming qoe and gaming video quality
Gaming QoE and video quality

- several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...

- objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available

- for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

→ nofu
Gaming QoE and video quality

- several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...

- objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available

- for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

→ nofu
Gaming QoE and video quality

- several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...

- objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available

- for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

→ nofu
Gaming QoE and video quality

- several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...

- objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available

- for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

→ nofu
Gaming QoE and video quality

- several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...

- objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available

- for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

→ nofu
Gaming QoE and video quality

- several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...

- objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available

- for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

→ nofu
Gaming QoE and video quality

- several influencing factors: Möller, Schmidt, and Zadtoothaghaj [8]
 - video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...

- objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available

- for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

→ nofu
Gaming QoE and video quality

- several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...

- objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available

- for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

→ nofu
features:
- $s_i + t_i^M$ [6], ff_i^l [7], staticnessl, blockinessl[5],
- cubrow-$\{\text{first, last}\}^M$, cubcol-$\{\text{first, last}\}^M$, blockmotionM[5]

- speedup: 360p center crop of input video
- temporal pooling: 12 feature values per frame
 - first, mean, std, groups $g = [1, 2, 3]$: mean_g, std_g
 - duration independent 108 values per sequence

- ML algorithm: feature selection + RF
- additional no-ref model: brisque+niqe features, similar pipeline
 → Evaluation and used Dataset
nofu – Features and Approach

▶ features:
 - \(si^I + ti^M \) [6], \(fft^I \) [7], staticness' \(s_i \), blockiness'\(b_i \)[5],
 - cubrow-\{first, last\}\(M \), cubcol-\{first, last\}\(M \), blockmotion\(M \)[5]

▶ speedup: 360p center crop of input video
▶ temporal pooling: 12 feature values per frame
 - first, mean, std, groups \(g \) = \([1, 2, 3]\): mean\(_g\), std\(_g\)
 - \(\rightarrow \) duration independent 108 values per sequence

▶ ML algorithm: feature selection + RF
▶ additional no-ref model: brisque+niqe features, similar pipeline
 \(\rightarrow \) Evaluation and used Dataset
nofu – Features and Approach

Video

Feature Extraction
movement, staticness, blockiness, si, ti, ..

Temporal Pooling
mean, std, first mean_g_1, ...3 std_g1, .. 3

Machine Learning Model
Feature Selection + Random Forest

features:
- \(si^I + ti^M \) \([6]\), \(fft^I \) \([7]\), staticness\(^I \), blockiness\(^I \)[5],
- \(\text{cubrow-\{first, last\}}^M \), \(\text{cubcol-\{first, last\}}^M \), blockmotion\(^M \)[5]

- speedup: 360p center crop of input video
- temporal pooling: 12 feature values per frame
 - first, mean, std, groups \(g = [1, 2, 3] \): mean\(_g \), std\(_g \)
 - duration independent 108 values per sequence

- ML algorithm: feature selection + RF

- additional no-ref model: brisque+niqe features, similar pipeline
 → Evaluation and used Dataset
nofu – Features and Approach

features:
- $s_i^l + t_i^M$ [6], fft^l [7], staticnessl, blockinessl[5],
- cubrow-\{first, last\}M, cubcol-\{first, last\}M, blockmotionM[5]

speedup: 360p center crop of input video

temporal pooling: 12 feature values per frame
- first, mean, std, groups $g = [1, 2, 3]$: mean$_g$, std$_g$
- \rightarrow duration independent 108 values per sequence

ML algorithm: feature selection + RF

additional no-ref model: brisque+niqe features, similar pipeline
\rightarrow Evaluation and used Dataset
nofu – Features and Approach

- **Feature Extraction per frame**
 - Video
 - Feature Extraction:
 - movement, staticness, blockiness, si, ti, ..
 - Temporal Pooling:
 - mean, std, first
 - mean_g_1, ...3
 - std_g1, .. 3
 - Machine Learning Model:
 - Feature Selection + Random Forest

- **Features**:
 - \(si^I + ti^M\) \([6]\), \(fft^I\) \([7]\), staticness\(^I\), blockiness\(^I\)[5],
 - cubrow-{first,last}\(^M\), cubcol-{first,last}\(^M\), blockmotion\(^M\)[5]

- **Speedup**: 360p center crop of input video

- **Temporal Pooling**: 12 feature values per frame
 - first, mean, std, groups \(g = 1, 2, 3\): \(mean_g\), \(std_g\)
 - \(\rightarrow\) duration independent 108 values per sequence

- **ML algorithm**: feature selection + RF

- **Additional no-ref model**: brisque+niqe features, similar pipeline
 - \(\rightarrow\) Evaluation and used Dataset
nofu – Features and Approach

- **features:**
 - $si^l + ti^M$ [6], fft^l [7], staticnessl, blockinessl[5],
 - cubrow-{$first, last}^M$, cubcol-{$first, last}^M$, blockmotionM[5]

- **speedup:** 360p center crop of input video

- **temporal pooling:** 12 feature values per frame
 - $first$, mean, std, groups $g = [1, 2, 3]$: $mean_g$, std_g
 - → duration independent 108 values per sequence

- **ML algorithm:** feature selection + RF

- **additional no-ref model:** brisque+niqe features, similar pipeline
 → Evaluation and used Dataset
nofu – Features and Approach

Video

Feature Extraction

movement, staticness, blockiness, si, ti, ..

Temporal Pooling

mean, std, first
mean_g_1, ...3
std_g1, .. 3

Machine Learning Model

Feature Selection + Random Forest

► features:
 ○ cubrow-{first,last}M, cubcol-{first,last}M, blockmotion$^M[5]$

► speedup: 360p center crop of input video

► temporal pooling: 12 feature values per frame
 ○ first, mean, std, groups $g = [1, 2, 3]$: $mean_g$, std_g
 ○ \rightarrow duration independent 108 values per sequence

► ML algorithm: feature selection + RF

► additional no-ref model: brisque+niqe features, similar pipeline
 \rightarrow Evaluation and used Dataset
features:
- $s_i^l + t_i^M$ [6], ff_i^l [7], staticnessl, blockinessl[5],
- cubrow-$\{\text{first, last}\}^M$, cubcol-$\{\text{first, last}\}^M$, blockmotionM[5]

speedup: 360p center crop of input video

temporal pooling: 12 feature values per frame
- first, mean, std, groups $g = [1, 2, 3]$: $\text{mean}_g, \text{std}_g$
- \rightarrow duration independent 108 values per sequence

ML algorithm: feature selection + RF

additional no-ref model:brisque+niqe features, similar pipeline
\rightarrow Evaluation and used Dataset
nofu – Features and Approach

- **Video**
- **Feature Extraction**
 - movement, staticness, blockiness, si, ti, ..
- **Temporal Pooling**
 - mean, std, first mean_g_1, ...3
 - std_g1, .. 3
- **Machine Learning Model**
 - Feature Selection + Random Forest

- **Features:**
 - cubrow-{first,last}M, cubcol-{first,last}M, blockmotion$^M [5]$

- **Speedup:** 360p center crop of input video

- **Temporal Pooling:** 12 feature values per frame
 - $first$, $mean$, std, groups $g = [1, 2, 3]$: $mean_g$, std_g
 - → duration independent 108 values per sequence

- **ML Algorithm:** feature selection + RF

- **Additional no-ref model:** brisque+niqe features, similar pipeline

→ Evaluation and used Dataset
nofu – Features and Approach

- **features:**
 - $s_i + t_i^M$ [6], fft_I [7], staticness_I, blockiness_I [5],
 - cubrow-{first, last}M, cubcol-{first, last}M, blockmotionM [5]

- **speedup:** 360p center crop of input video

- **temporal pooling:** 12 feature values per frame
 - first, mean, std, groups $g = [1, 2, 3]$: mean$_g$, std$_g$
 - \rightarrow duration independent 108 values per sequence

- **ML algorithm:** feature selection + RF

- **additional no-ref model:** brisque+niqe features, similar pipeline
 \rightarrow Evaluation and used Dataset
Evaluation – Dataset

▶ **GamingVideoSET**: Barman et al. [4]:

- 24 full-HD sources, 576 distorted videos, 90 with subjective scores

▶ two main evaluations: 10-fold cross validation and source fold:

- (1) based on VMAF, (2) based on subjective scores

→ MOS prediction
Evaluation – Dataset

GamingVideoSET: Barman et al. [4]:
- 24 full-HD sources, 576 distorted videos, 90 with subjective scores

Two main evaluations: 10-fold cross validation and source fold:
- (1) based on VMAF, (2) based on subjective scores

→ MOS prediction
Evaluation – Dataset

- **GamingVideoSET**: Barman et al. [4]:
 - 24 full-HD sources, 576 distorted videos, 90 with subjective scores

- Two main evaluations: 10-fold cross validation and source fold:
 - (1) based on VMAF, (2) based on subjective scores

→ MOS prediction
Evaluation – Dataset

GamingVideoSET: Barman et al. [4]:

- 24 full-HD sources, 576 distorted videos, 90 with subjective scores

Two main evaluations: 10-fold cross validation and source fold:

- (1) based on VMAF, (2) based on subjective scores

→ MOS prediction
Evaluation – Dataset

GamingVideoSET: Barman et al. [4]:

- 24 full-HD sources, 576 distorted videos, 90 with subjective scores

Two main evaluations: 10-fold cross validation and source fold:

- (1) based on VMAF, (2) based on subjective scores
 → MOS prediction
Evaluation – MOS prediction

Pearson (P), Spearman (S), Kendall (K) and RMSE

- nofu > brisque + niqe > vmaf > ssim

- Source video fold evaluation: nofu > brisque + niqe

→ Conclusion
Evaluation – MOS prediction

Pearson (P), Spearman (S), Kendall (K) and RMSE

- nofu > brisque+niqe > VMAF > SSIM
- Source video fold evaluation: nofu > brisque+niqe

→ Conclusion
Evaluation – MOS prediction

Pearson (P), Spearman (S), Kendall (K) and RMSE

- nofu > brisque + niqe > VMAF > ssim

- Source video fold evaluation: nofu > brisque + niqe

→ Conclusion
Conclusion, Summary and Future Work

- introduced **nofu**: no-reference model for gaming video quality
 - **features**: quality-related and gaming-specific
 - **temporal pooling + 360p center crop**
 - machine learning based
- evaluation using GamingVideoSET [4]
 - **nofu** outperforms other no-ref models + VMAF
 - per source fold: promising results
- open and next steps:
 - include delay/latency, bitstream features, combine **nofu** + **brisque** + **niqe**
 - use features/approach for different tasks
Conclusion, Summary and Future Work

- introduced **nofu**: no-reference model for gaming video quality
 - **features**: quality-related and gaming-specific
 - **temporal pooling + 360p center crop**
 - machine learning based

- evaluation using GamingVideoSET [4]
 - **nofu** outperforms other no-ref models + VMAF
 - per source fold: promising results

- open and next steps:
 - include delay/latency, bitstream features, combine **nofu** + brisque + niqe
 - use features/approach for different tasks
Conclusion, Summary and Future Work

- introduced **nofu**: no-reference model for gaming video quality
 - **features**: quality-related and gaming-specific
 - **temporal pooling + 360p center crop**
 - machine learning based

- evaluation using GamingVideoSET [4]
 - **nofu** outperforms other no-ref models + VMAF
 - per source fold: promising results

- open and next steps:
 - include delay/latency, bitstream features, combine **nofu**+brisque+niqe
 - use features/approach for different tasks
Conclusion, Summary and Future Work

- introduced **nofu**: no-reference model for gaming video quality
 - **features**: quality-related and gaming-specific
 - **temporal pooling + 360p center crop**
 - machine learning based

- evaluation using GamingVideoSET [4]
 - **nofu** outperforms other no-ref models + VMAF
 - per source fold: promising results

- open and next steps:
 - include delay/latency, bitstream features, combine **nofu**+brisque+niqe
 - use features/approach for different tasks
Conclusion, Summary and Future Work

- introduced **nofu**: no-reference model for gaming video quality
 - **features**: quality-related and gaming-specific
 - **temporal pooling + 360p center crop**
 - machine learning based

- **evaluation using GamingVideoSET [4]**
 - **nofu** outperforms other no-ref models + VMAF
 - per source fold: promising results

- **open and next steps:**
 - include delay/latency, bitstream features, combine **nofu** + **brisque** + **niqe**
 - use features/approach for different tasks
Conclusion, Summary and Future Work

- introduced **nofu**: no-reference model for gaming video quality
 - **features**: quality-related and gaming-specific
 - **temporal pooling + 360p center crop**
 - machine learning based

- evaluation using GamingVideoSET [4]
 - **nofu** outperforms other no-ref models + VMAF
 - per source fold: promising results

- open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+nique
 - use features/approach for different tasks
Conclusion, Summary and Future Work

- introduced **nofu**: no-reference model for gaming video quality
 - **features**: quality-related and gaming-specific
 - **temporal pooling + 360p center crop**
 - machine learning based

- evaluation using GamingVideoSET [4]
 - **nofu** outperforms other no-ref models + VMAF
 - per source fold: promising results

- open and next steps:
 - include delay/latency, bitstream features, combine nofu + brisque + niqe
 - use features/approach for different tasks
Conclusion, Summary and Future Work

- introduced **nofu**: no-reference model for gaming video quality
 - **features**: quality-related and gaming-specific
 - **temporal pooling + 360p center crop**
 - machine learning based

- evaluation using GamingVideoSET [4]
 - **nofu** outperforms other no-ref models + VMAF
 - per source fold: promising results

- open and next steps:
 - include delay/latency, bitstream features, combine **nofu**+brisque+niqe
 - use features/approach for different tasks
Conclusion, Summary and Future Work

- introduced **nofu**: no-reference model for gaming video quality
 - **features**: quality-related and gaming-specific
 - **temporal pooling + 360p center crop**
 - machine learning based

- evaluation using GamingVideoSET [4]
 - **nofu** outperforms other no-ref models + VMAF
 - per source fold: promising results

- open and next steps:
 - include delay/latency, bitstream features, combine **nofu** + brisque + niqe
 - use features/approach for different tasks
Conclusion, Summary and Future Work

- introduced **nofu**: no-reference model for gaming video quality
 - **features**: quality-related and gaming-specific
 - **temporal pooling + 360p center crop**
 - machine learning based

- evaluation using GamingVideoSET [4]
 - **nofu** outperforms other no-ref models + VMAF
 - per source fold: promising results

- open and next steps:
 - include delay/latency, bitstream features, combine **nofu**+brisque+niqe
 - use features/approach for different tasks
Thank you for your attention

...... are there any questions?
References

References II

