Video quality metadata in compressed bitstreams

Ioannis Katsavounidis
Research Scientist
Video Infrastructure
Facebook
Outline

- Video content at Facebook
- Video quality measurement at Facebook
- Upload quality calculation
- Metadata in digital images
- Full-reference metrics as video quality metadata
Supporting emergency services and government organizations during COVID-19
Rooms2Live

Get ready to go LIVE

Messenger Rooms
Faith Communities

Faith on Facebook Resource Hub
Shops
Premium Music Videos
Reels
Video content at FB

- **Portal**
- **Oculus**

VOD
- IG-direct
- FB-uploads

Live
- FB-Live (iOS/Android)
- FB-Live (API)

Real-time
- WhatsApp
- Messenger video-call

- User-generated
- Professional

Facebook Gaming

IGTV

Live gameshow
Challenge in Quality Assessment – Variation in Uploaded Video Quality

- **High quality ingested videos**
 - Curated content and some UGC

- **Some UGC can be really low quality**
 - In reshared UGC, source is already highly compressed
 - Downloading from WhatsApp/Messenger and uploading to FB
 - Client transcoding needed to upload reliably from poor connections (2G/3G)
 - High-quality source transcoded to low resolution.

- **FB Products make it is easy to edit/remix content prior to upload**
 - Memes often start with low-quality source and adds text/images on top.
 - Quality is in the “eye of the beholder”
Quality Metric (FB-MOS) Building Blocks

- Editing/Client Transcode
- FB Original
- Server Encoding
- 240p Encoding
- 360p Encoding
- 720p Encoding
- 1080p Encoding
- ABR
- Overall Quality Score
- Upload Quality Score
- Playback Quality Score
- Inline Video in Feed
- Full Screen Video on Mobile
- Full Screen Video on Connected TV or browser (www)
- Full Screen Video on TV or browser (www)
Aperture Value: 1.956
Brightness Value: -1.296
Color Space: Uncalibrated
Components Configuration: 1, 2, 3, 0
Date Time Digitized: Oct 12, 2020 at 11:34:03 PM
Date Time Original: Oct 12, 2020 at 11:34:03 PM
Digital Zoom Ratio: 2.366
Exif Version: 2.3.1
Exposure Bias Value: 0
Exposure Mode: Auto exposure
Exposure Program: Normal program
Exposure Time: 1/4
Flash: Off, did not fire
FlashPix Version: 1.0
FNumber: 1.8
Focal Length: 67
Focal Length In 35mm Film: 128
Focal Length In 35mm Film: 67
Photographic Sensitivity (ISO): 128
Lens Make: Apple
Lens Model: iPhone X back dual camera 4mm f/1.8
Lens Specification: 4, 6, 1.8, 2.4
Metering Mode: Pattern
Offset Time: 07:00
Offset Time Digitized: 07:00
Offset Time Original: 07:00
Pixel X Dimension: 3,024
Pixel Y Dimension: 4,032
Scene Capture Type: Standard
Scene Type: A directly photographed image
Sensing Method: One-chip color area sensor
Shutter Speed Value: 1/5
Subject Area: 2,014, 1,507, 2,212, 1,330
Sub-second Time Digitized: 335
Sub-second Time Original: 335
White Balance: Auto white balance
Transcoding example (FFMPEG/x264)

Elementary video quality information about this encode is readily available
• Per frame average QP
• Per frame PSNR (Y/U/V)
• Per frame SSIM
At near-zero compute overhead
How about camera capture?

Lens/CMOS sensor ➔ RGB/YUV frame ➔ Video encoder ASIC ➔ Compressed file

Most HW video encoders include video quality metrics per frame – at least for debugging issues
The life-cycle of a UGC video

Video captured on a cellphone → Video sent by SMS/WhatsApp/Messenger/(...) to friend → Video sent by SMS/WhatsApp/Messenger/(...) to friend → ... → Video sent by SMS/WhatsApp/Messenger/(...) to friend

Another user saves on mobile/tablet → Video gets uploaded to YouTube → A user saves video on their desktop → Video is posted on Facebook

Video is posted on Instagram

Quality vs. Time
Challenge

• Each transcoding pipeline estimates source video quality using no-reference metrics to determine best ingestion strategy
• During transcoding, full-reference quality metrics are generated to determine best encoding settings/ABR strategy
• Estimation errors propagate and accumulate when cascading multiple transcoding pipeline
• No-reference metrics require significant compute overhead
Existing proposals

- ISO/IEC 23001-10, MPEG Systems Technologies – Part 10: Carriage of timed metadata metrics of media in ISO base media file format
- ISO/IEC 23009 Dynamic Adaptive Streaming over HTTP (DASH)
Existing proposals (cont’d)

- Video quality metrics covered by MPEG standards
 - PSNR
 - SSIM
 - MS-SSIM
 - VQM
 - PEVQ
 - PEVQ
 - MOS
 - FSIG
Existing proposals – pros and cons

• Good starting point, offering a system-level (container) mechanism to store per-frame quality metadata
• Primary use-case for MPEG proposal is to convey quality metadata to clients and facilitate delivery of video content through ABR algorithms
• Transcoding hasn’t been properly considered
What is missing

• More (newer) video quality metrics
 • VMAF
 • FB-MOS
• Multiple generations of full-reference metrics – cascade of transcoding steps
• Scaled (at different viewport resolutions) vs. non-scaled metrics
• Spatio-temporal aggregation methods
• Presence of video quality metadata in elementary video streams and system (container) formats
Our proposal – standard video quality metadata payload

- Video quality metric name (e.g. “SSIM”)
- Video quality metric version or model identifier (e.g. “v0.6.1”)
- Video quality raw score (e.g. “0.9256”)
- Video quality MOS score (e.g. “3.89”)
- 95% Confidence interval (e.g. “0.1” – this can be obtained from the statistical analysis of subjective data, as correlated with a given metric)
- Scaling method (e.g. “None”, for non-scaled or “Lanczos-5”)
- Temporal reference (e.g. “0-3”, when referring to the first 4 frames in a sequence)
- Aggregation method (e.g. “Arithmetic mean”)
- Generation index (e.g. “2”, if there were two prior encoding steps – perhaps an image sensor, and a first encoding)

Katsavounidis et al. “A case for embedding video quality metrics as metadata in compressed bitstreams”
When do we need no-reference video quality metrics?

• In the camera front-end, to estimate quality of raw input pixels
 • Although, camera metrics (aperture, ISO, speed) can help
• For legacy videos, i.e. those that don’t have video quality metadata
• For video broadcasting applications (transmission over noisy channels)
• For different (non-transcoding) image/video applications
Summary

• Full reference video quality metrics are readily available in most modern transcoding pipelines
• Including full-reference video quality metrics as metadata in compressed bitstreams takes very little space and provides a more accurate and “green” way of estimating source video quality
• Establishing a standard format to save such metadata at both elementary video bitstream level and system layer is crucial
• Both HW (device) makers and service providers have a lot to gain by offering such metadata in their compressed bitstreams