VQEG NORM Overview
+ Updates on Spatial Information/Temporal Information Indicators

VQEG NORM, May 2022

Werner Robitza <werner.robitza@gmail.com>
Cosmin Stejerean
Ioannis Katsavounidis
Lukas Krasula
... and many others
Overview — Project Introduction
VQEG No Reference Metrics (NORM)

Activities:

● NR Metric Development—What Is Our Design Goal?
 ○ Lead: Margaret Pinson
 ○ Evaluation of various NR metrics on different datasets
 ○ Lots of resources

● SI and TI Clarification
 ○ Lead: Werner Robitza
 ○ Update of spatiotemporal complexity indicators (← will give more info on this)
 ○ Meeting minutes

● Video Quality Metadata Standard
 ○ Lead: Ioannis Katsavounidis
 ○ Provide quality-related metadata in video sequences
 ○ Motivation document
 ○ Meeting minutes
 ○ Metadata proposal (T.35 metadata payload)
SI/TI Overview

- Defined in ITU-T Rec. P.910
- Classify spatiotemporal complexity of video sequences
- Definitions:
 - SI: Standard deviation of Sobel-filtered image
 - TI: A basic motion difference feature for adjacent frames

\[
SI = \max_{\text{time}} \{ \text{std}_{\text{space}}[\text{Sobel}(F_n)] \}
\]

\[
M_n(i,j) = F_n(i,j) - F_{n-1}(i,j)
\]
Overview: VQEG Updates to SI/TI Functions

- Make SI/TI future-proof:
 - Harmonize existing implementations wrt. handling of edges and full/limited range conversions
 - Handle content > 8 Bit per channel
 - Handle HDR content
 - Provide an update for ITU-T Rec. P.910

- Provide an even better encoding complexity metric:
 - Enhance SI/TI with basic motion compensation features
 - Ioannis/Cosmin from Meta will publish code to perform motion estimation analysis
 - Generic method to remove impact of content features that can be easily predicted with little
 information overhead → should give more accurate results
Activities so far

- Monthly meetings, open for everyone (link at VQEG website)
- Previous meeting notes:
 - https://docs.google.com/document/d/1pjAJet6YMznf1pPZ_5Xp0L3UiJvCh78x2LRIHvKAPo/edit
- New software developed:
 - Main code written by Werner, additional input on HDR conversion functions from Lukas Krasula
 - Code is written in Python (slow, but ongoing activity to multi-thread)
 - Moved to VQEG organization now: https://github.com/VQEG/siti-tools
 - Tests included for SDR, HDR content
 - Legacy branch for old version of code
- Evaluations of old vs. new scores and others:
 - https://github.com/slhck/siti-evaluation
 - Various data, scripts and plots to reproduce analyses
- Writing of ITU-T Rec. P.910 recommendation update
 - https://docs.google.com/document/d/1pGqvifoYk_nZ33Q-xnbOMTzQI4wpwqS/edit#heading=h.s8a3itid4k6q
 - Please add your suggestions!
Special wrapper for Python-ffmpeg binding to get actual values without grayscale conversion.

YUV input → Y component extraction → Y component:

- **Y**
 - Normalize between
 - [0, 1]

Depending on bit depth, input can be [0, 255], [0, 1023], …

Values are now in display luminance

- **Y** → **Y**
 - Normalize between
 - [0, 1]

If limited range: Scale to full range:

- **Y**
 - **norm'**
 - [0, 1]

Which HDR mode?

- HDR10
 - Apply EOTF from ITU-R BT.2100
 - Apply EOTF from ITU-R BT.1886

SDR

- **SI**
 - Normalize back to 8-Bit range
 - SI results

HLG

- **SI**
 - SI' function (as-is)
 - Normalize back to 8-Bit range

- This assumes a display with luminance from 0.1–300 nits

- E.g., for 8 bit, convert [16/255, 235/255] to [0, 1]

- Values are already in PQ domain

- SI function
 - **SI**, SI results

- Apply EOTF from ITU-R BT.2100

- Apply OETF from ITU-R BT.2100

- Y_nits

- Now calculated in PQ domain

- Depending on bit depth, input can be [0, 255], [0, 1023], …
Further Contents

- New vs. old SI/TI, brief comparison
- Analysis of resolution dependency
- Analysis of compression efficiency
- P.910 updates
New vs. old SI/TI

https://github.com/slhck/siti-evaluation/tree/master/analyze-siti-new-vs-legacy
Evaluation of new SI/TI

New vs. “legacy” SI/TI on AVT-VQDB-UHD1

10s, 2160p, 8-bit SDR

→ Values are lower due to shift to PQ domain
Evaluation of new SI/TI

New and old values for SDR for another set of sequences (Netflix Open Content)

Here, y-axis is normalized, so we see that the scores are basically the same.

Minor differences in scores may be related to “HDR-ness” of the content, especially for the Sparks sequence.
Conclusion

● New SI operates the same way for SDR contents, just on a different scale
 ○ We did not want to change the underlying functionality here, just extend it for more use cases
 ○ So this makes sense and is a good result

● New SI gives about the same results for HDR10 compared to old
 ○ Goal achieved? For HDR10, values are already in PQ, so SI was expected to be the same
Resolution dependency

https://github.com/slhck/siti-evaluation/tree/master/analyze-siti-resolution
Caveat: SI Resolution Dependency

- The magnitude of SI intrinsically depends on the content resolution
- The gradients in the Sobel filter depend on the content itself
- With natural images, these gradients are not the same
- Compare e.g. Big Buck Bunny in 1080p vs 240p
- Spread of values depends on content properties
- Similar range for “smooth” images without many gradients (Dancers, Vegetables, Cutting Orange)
- Wide range for sports clips (Surfing Sony, American Football)
- Largest differentiation in Big Buck Bunny, which also retains the largest SI for the lowest resolution
Intrinsic Resolution Dependency

- If there is little information to begin with, changing the resolution will not have a big impact.

- Absolute range of SI across all resolutions depends on the absolute value of SI (e.g. for the 1080p resolution).

- Seems to be the case for the dataset.

- Reasonable linear fit between avg. SI for 1080p variant, and range of all SI values across entire resolution set.

- Differentiator is still the content type (here, e.g. more natural vs. CGI/gaming).
Conclusion

- Range of SI depends on
 - Original resolution
 - Absolute SI value of content
 - Content properties (smoothness/naturalness etc.)

- A compensation function would be nice so that we could compare SI across contents with different resolutions, but seems challenging to develop without analyzing a broad set of contents

- Suggestion to stick with what we have for now, and warn users not to compare across resolutions
Analysis of compression efficiency

https://github.com/slhck/siti-evaluation/tree/master/analyze-siti-vs-other-metrics
Compression Efficiency

● We want to understand how well a certain clip can be compressed
 ○ i.e., retain quality under lossy compression
 ○ Quality is defined subjectively or via instrumental metrics

● How well do SI/TI and other metrics explain this compressibility?

● Analysis from QoMEX 2021 paper:
 ○ Also gave presentation at VQEG meeting in June, 2021.

● Code and data are now open-sourced
Goals — Working Hypothesis

Videos with higher SI/TI should be harder to compress

Videos with higher SI/TI have lower quality when compressed under bitrate constraint

High SI/TI lead to lower quality and lower compressibility

Compressibility of a source == achievable quality under bitrate constraints

Quality == subjective or “objective” MOS
Approach

Video database (AVT-VQDB-UHD1)

Sequences encoded for streaming (H.264, H.265, VP9)

Calculate quality scores and bitrate ladder (MOS, VMAF, ITU-T Rec. P.1204.3)

Calculate area under bitrate ladder as compressibility

Compressibility Score

SI/TI

Determine correlation

Source sequences (Raw UHD-1, 8-10s)
1. Create bitrate ladder for each SRC, i.e. MOS against bitrate
2. Construct convex hull of ideal points
3. Fit sigmoid function against hull
4. Calculate area under each curve as quality/compressibility for that SRC/codec

Compressibility

1 number for each SRC/codec combination
Each SRC and codec have different compressibility scores

Note:
- Scores are normalized between 0 and 1 for this analysis (to be refined)
- Scores are based on MOS here

Examples:
- BBB is the easiest to compress, although used very often in tests
- Netflix Water sequence is the hardest
Correlation Results

- **TI features** have higher correlation with compressibility than SI features
- **Minimum TI** seems like a better correlated indicator than maximum TI
- **Mean SI** correlates better than min/max
- **Criticality metric** from Fenimore et al. (basically $\log(SI \times TI)$) has good correlation with compressibility
New Data

- Currently calculating additional explanatory metrics:
 - CRF-based content complexity indicator
 - VCA output / VCD from Hadi Amirpour, Vignesh V. Menon (see Presentation #105)

- Can implement any data source in the original analysis code

- Please share what you have, if you want something added
P.910 Updates
Existing Recommendation ITU-T Rec. P.910

● **Current state:**
 ○ Contains a description of how SI/TI can be used
 ○ Definition of Sobel operator

● **Updated text:**
 ○ https://docs.google.com/document/d/1pGqvifcoYk_nZ33Q-xnbOMTzQl4wpwgS/edit#heading=h.s8a3itid4k6q
 ○ Add SDR/HDR processing pipeline (pre- and post-processing steps)
 ○ Better description of edge cases, usage notes
 ○ Add bibliography for relevant research

● **Planned to submit to ITU-T Study Group 12 meeting, deadline: 25 May 2022**