VCAv2.0: A green video complexity analysis

Vignesh V Menon
Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität, Klagenfurt, Austria

29 June 2023
Outline

1 Background

2 Video Complexity Features

3 Accuracy Analysis

4 Performance Optimizations

5 Conclusions

6 Future steps
The optimal encoding parameters depend on the **video content complexity**.

There is a need to extract content features that can represent the video content complexity to predict the optimal encoding parameters for that video content.
Texture Energy

Compute texture energy per block

A DCT-based energy function is used to determine the block-wise feature of each frame defined as:

\[H_{Y,p,k} = \sum_{i=0}^{w-1} \sum_{j=0}^{w-1} e^{\left(\frac{ij}{wh}\right)^2 - 1} |DCT(i,j)| \]

where \(w \times w \) is the size of the block, and \(DCT(i,j) \) is the \((i,j)^{th}\) DCT component when \(i + j > 0 \), and 0 otherwise.

The energy values of blocks in a frame are averaged to determine the energy per frame.\(^1\)

\[E_Y = \sum_{k=0}^{C-1} \frac{H_{Y,p,k}}{C \cdot w^2} \]

Texture energy gradient

\(h_p \): SAD of the block level energy values of frame \(p \) to that of the previous frame \(p - 1 \).

\[
h = \sum_{k=0}^{C-1} \frac{|H_{Y,p,k} - H_{Y,p-1,k}|}{C \cdot w^2}
\]

(3)

where \(C \) denotes the number of blocks in frame \(p \).
Luminescence

The luminescence of non-overlapping blocks k of each frame p is defined as:

$$L_{Y,k} = \sqrt{DCT(0,0)}$$

(4)

where $DCT(0,0)$ is the DC component in the DCT calculation. The block-wise luminescence is averaged per frame denoted as L_Y as shown below.

$$L_Y = \sum_{k=0}^{K-1} \frac{L_{Y,p,k}}{C \cdot w^2}$$

(5)

where C denotes the number of blocks in frame p.

Chroma features

VCA also determines chroma texture energy E_U and E_V (for U and V planes), and the chrominance L_U and L_V (for U and V planes).
Figure: Example heatmap of Luminescence (L), spatial texture (E) and temporal activity (h) features of the 2nd frame of CoverSong_1080P_0a86 video of Youtube UGC dataset extracted using VCA.
Accuracy Analysis

Correlation of spatial complexity features with the ground truth

Bitrate in All Intra configuration\(^2\) is considered as the ground truth of the spatial complexity.

![Figure: PCC between SI and \(E_Y\), respectively, with bitrate in All Intra configuration with medium preset of x265 encoder for the VCD dataset.\(^3\)](image)
Accuracy Analysis

Correlation of complexity features with bitrate in the Low Delay P picture (LDP) configuration

Figure: PCC between SI, E_Y, TI and h with bitrate in the Low Delay P picture configuration with *ultrafast* preset of x265 encoder for the VCD dataset.

E_Y and h strongly correlate with the encoding bitrate.
Performance Optimizations

Multi-threading optimizations

- Creates multiple threads within a VCA execution instance, which executes independently but concurrently, sharing process resources.
- Independent threads carry out DCT-energy computation per block.

x86 SIMD optimizations

- SIMD optimization\(^4\) of DCT functions implemented as intrinsic and assembly codes for x86 architecture.

Performance Optimizations
Low-pass DCT optimization

- Unlike SI, the E_Y feature exhibits better correlation across resolutions.
- In VCA v2.0, the complexity features are evaluated on the video spatially downsampled by a factor of two.

Figure: PCC between the spatial complexity features (a) SI and (b) E_Y across multiple resolutions for the VCD dataset.
Performance Optimizations

Processing time results

Figure: Processing time of video content complexity analysis methods.

- **m1:** without any performance optimizations
- **m2:** with SIMD
- **m3:** with SIMD and low-pass DCT
- **m4:** with SIMD, low-pass DCT and multi-threading (2 threads)
- **m5:** with SIMD, low-pass DCT and multi-threading (4 threads)
- **m6:** with SIMD, low-pass DCT and multi-threading (8 threads)
Performance Optimizations

Energy consumption results

Figure: Energy consumption of video content complexity analysis methods.

m1: without any performance optimizations
m2: with SIMD
m3: with SIMD and low-pass DCT
m4: with SIMD, low-pass DCT and multi-threading (2 threads)
m5: with SIMD, low-pass DCT and multi-threading (4 threads)
m6: with SIMD, low-pass DCT and multi-threading (8 threads)
Conclusions

• VCA is an open-source video complexity analyzer library published under the GNU GPLv3 license.

• Low-complexity DCT-based energy features are extracted using VCA v2.0, which encoders use to derive decisions like bitrate-ladder, frame-type, block-partitioning, and much more.

• Multi-threading, x86 SIMD, and low-pass DCT optimizations improve the energy efficiency of the VCA implementation.

• Compared to the state-of-the-art SITI implementation of video complexity analysis, VCA v2.0 yields a better estimation of video complexity, with an energy consumption reduction of 97.06%.
Future steps

- Identify parallelizable code and perform SIMD optimization
- ARM optimization
- CUDA/ OpenCL optimization
- Open-source the prototypes of the VCA applications
Thank you for your attention!

Vignesh V Menon (vignesh.menon@aau.at)