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Foreword
Over the past ten years, the transmission of video using digital compression methods has progressed from limited video conferencing applications to widespread use in applications from high definition television to personal desktop computer communications. During this period there have been continuing efforts by laboratories and standards organizations to develop objective measurement methods to be used for quality of service (QoS) testing. In the mid 1990’s a series of three standards (ANSI T1.801.01, ANSI T1.801.02, and ANSI T1.801.03) were issued by T1 that provide background information and an extensive list of parametric calculations to be used in video performance assessment. While many of the parametric calculations in ANSI T1.801.03 have not, to date, been implemented in commercial measurement instruments, this standard provided the basis for further research as well as the commonly used definition of peak signal to noise ratio (PSNR) for the luminance (Y) signal of component video that is sampled according to ITU-R Recommendation BT.601.

As part of the industry-wide effort to develop video QoS measurements, three methodological approaches have been defined.

Full Reference (FR) - A method applicable when the full reference video signal is available. This is a double-ended method and is the subject of this report.

Reduced Reference (RR) - A method applicable when only reduced video reference information is available. This is also a double-ended method.

No Reference (NR) - A method applicable when no reference video signal or information is available. This is a single-ended method.

To address the validation and comparison of video-quality models, the Video Quality Experts Group (VQEG) was formed in 1997 as an informal subgroup of the ITU-T and ITU-R. VQEG members are experts from various backgrounds and affiliations, including participants from several internationally recognized organizations working in video quality assessment. Over a two-year period, VQEG designed and implemented extensive subjective and objective test plans to evaluate a number of proponent algorithms for the FR method. PSNR was also included in these evaluation tests. Results of those tests have been widely publicized (see ITU-T COM 9-80). An excerpt is quoted here:

The VQEG test results based on the analysis obtained for the four individual subjective test quadrants essentially show the following:

· No objective measurement system in the test is able to replace subjective testing.

· No objective model statistically outperforms the others in all reference conditions.

· No objective model statistically outperforms PSNR in all reference conditions.

· Based on present evidence, no single method can be recommended to ITU at this time.

Many FR proponents have made improvements to their original algorithms and VQEG is expected to execute a new series of tests for the validation of these improved methods. Committee T1 is awaiting the results of these new VQEG validation tests before proceeding with the standardization of any one FR method. To provide immediate guidance for use by industry, Committee T1 has instead decided to publish a series of technical reports that will document existing FR methods and their application to QoS testing. The series of TRs provide an extensible framework into which any documented video quality metric can be incorporated and quantitatively related to other previously disclosed algorithms. The present report (TR A1), the first TR in the framework,  covers methods for specifying the accuracy and cross-calibration of the video quality metrics. The second TR in the framework (TR A2) covers normalization methods (e.g., spatial registration, temporal registration, and gain / level offset calibration). The third report, TR A3, covers specification of one video quality metric that is commonly used by industry, namely peak-signal-to-noise-ratio (PSNR). The JND-based PQR method is defined in Technical Report TR A4.

Suggestions for improving this technical report are welcome and should be sent to the Alliance for Telecommunications Industry Solutions - Committee T1 Secretariat, 1200 G Street N.W., Suite 500, Washington, D.C. 20005.
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 1. Scope, purpose, and application

1.1 Scope

This Technical Report (TR) is the first in a family of TRs that pertain to the development, documentation, external validation, and use of full-reference video-quality metrics (VQMs).   The current TR describes the basic framework and criteria.  It also defines guidelines as to the use of the TRs by industry, and guidelines as to how to enter a VQM into the TR family. These guidelines include the following:  (a) definition of the necessary elements in a full VQM disclosure; (b) an algorithm (based on statistical analysis relative to subjective data) to quantify the accuracy of a given VQM; (c) an algorithm for quantifying a transformation between the output of any new VQM and the output of any existing VQM; and (d) guidelines for documenting and specifying the limitations of a VQM; and (e) a list of the necessary procedural steps for incorporating a new VQM into the family of TRs.
1.2 Purpose

This Technical Report describes the basic framework to be used in conjunction with video quality measurements utilizing the Full Reference technique. Full reference video quality measurement methods are necessary to support the interconnection and interoperability of telecommunications networks at interfaces with end-user systems, carriers, information and enhanced-service providers, and customer premise equipment.

1.3 Application 

The methods specified in this Technical Report are based on processing component video such as defined by ITU-R Recommendation BT.601. This does not preclude implementation of measurement methods including composite video inputs and outputs. The conversion between composite and component domains is not part of this Technical Report.

2. Introduction 

Video quality metrics are intended to provide calculated values that are strongly correlated with viewer subjective assessments.  Initial efforts (for example, by the Video Quality Experts Group—VQEG) have shown that developing and validating a VQM standard is a daunting task.  Nonetheless, industry needs interim guidance to ensure specified levels of quality in networked video transport. For example, for the US Telecommunication industry, end-to-end quality of service (QoS) across the networks of multiple companies requires agreement on quality at the transfer points.  Without standards, different companies are likely to adopt different VQMs, and the communication gap between them will persist.
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Figure 1.  VQM Needs of  a US Telecom

In response to this need, the T1A1 has adopted as a VQM strategy an extensible family of TR’s that should enable industry to move ahead until standards are developed.  This strategy will provide guidelines for prospective industries that will use VQMs, and also for the addition of new VQMs.

For any desired application, this TR provides guidelines to achieve the following goals:

1. Specify the VQM needs for that application.

2. Assess the suitability of existing documented VQMs.

3. Drive the development by VQM proponents of new/improved VQM algorithms and products.

4. Inter-operate with different VQMs.

For any proposed VQM, this TR provides guidelines on how to document the VQM’s algorithms, accuracy, and limitations.  Also, this TR provides guidelines for cross-calibration—i.e., mapping the output of that particular VQM to the output of other VQMs that are already documented in the TRs.   

3.  Elements of a full VQM disclosure. 

Each candidate VQM must be fully disclosed in its candidate TR, such that it could be readily implemented by someone knowledgeable in the art.  The description of newly proposed VQMs should include three different datasets:  (a)  Test Vectors to check implementation of the VQM, including video inputs and resulting VQM outputs; (b) validation/accuracy data, including subjective ratings and model outputs (spanning enough quality range to be representative of typical transmitted videos); and (c) data for model-to-model VQM cross-calibration (a subset of the validation dataset).  Finally, there should be descriptions of scope and limitations, accuracy, and model cross-calibration as described in subsequent sections of this TR.

4.     Scope/Limitations of a VQM.  

The scope of a VQM can include the following elements (an illustrative list, intended neither to be prescriptive nor exhaustive):  (a) The type of scene content (“signal”), e.g., high/low motion, color versus black-and-white, interlaced versus progressive.  (b) The type and severity of artifacts (“noise”), driven by encoding techniques and bit rates (e.g., edge ringing, blurring, blockiness).  (c) The viewing conditions (including viewing distance, ambient illumination, and display parameters such as gamma, brightness, and phosphor types).  Each VQM should be qualitatively assessed as to the type of scene content, type and severity of artifacts, and viewing conditions under which the VQM can and cannot operate effectively.  It is important to list known problem areas (such as video distortions that include dropped frames) that would otherwise not be obvious, but the Scope/Limitations section is not intended to be an exhaustive list. 

A set of four tables should be included in the description of the VQM’s scope and limitations.  The first three of these tables should enumerate all the distortions (hypothetical reference circuits, or HRCs) of the data set of the Video Quality Experts Group, and optionally others, as follows:  (a) A table of test factors, coding technologies, and applications for which the VQM has shown accuracy as specified in Section 4; (b) A table of  test factors, coding technologies, and applications for which the VQM has been tested but not shown the accuracy specified in Section 5; and (c) A table of  the remaining VQEG test factors, coding technologies, and applications for which the VQM has not been tested.  In addition, there should be  (d) A table of test sequences used to determine test factors, coding technologies and applications for which the VQM has shown the accuracy specified in section 5.

Sample Tables (a), (b) and (d) are shown below.  (These tables exhaust the VQEG data set, so the sample Table c would not contain any entries):

	BIT RATE
	RES
	METHOD
	COMMENTS

	2 Mb/s
	¾ resolution
	mp@ml
	This is horizontal resolution reduction only

	2 Mb/s
	¾ resolution
	sp@ml
	

	4.5 Mb/s
	
	mp@ml
	With errors 

	3 Mb/s
	
	mp@ml
	With errors 

	4.5 Mb/s
	
	mp@ml
	

	3 Mb/s
	
	mp@ml
	

	4.5 Mb/s
	
	mp@ml
	Composite NTSC and/or PAL

	6 Mb/s
	
	mp@ml
	

	8 Mb/s
	
	mp@ml
	Composite NTSC and/or PAL

	8 & 4.5 Mb/s
	
	mp@ml
	Two codecs concatenated

	19/PAL(NTSC)-

19/PAL(NTSC)-

12 Mb/s
	
	422p@ml
	PAL or NTSC

3 generations

	50-50-…

-50 Mb/s
	
	422p@ml
	7th generation with shift / I frame

	19-19-12 Mb/s
	
	422p@ml
	3rd generation

	n/a
	
	n/a
	Multi-generation Betacam with drop-out (4 or 5, composite/component)


Table a.  Test factors, coding technologies and applications for which the candidate VQM method has shown the specified accuracy.

	BIT RATE
	RES
	METHOD
	COMMENTS

	1.5 Mb/s
	CIF
	H.263
	Full Screen

	768 kb/s
	CIF
	H.263
	Full Screen


Table b.  Test factors, coding technologies and applications for which the PQR method has not shown the specified accuracy.

	Sequence
	Characteristics

	Baloon-pops
	film, saturated color, movement

	NewYork 2
	masking effect, movement)

	Mobile&Calendar
	available in both formats, color, movement

	Betes_pas_betes
	color, synthetic, movement, scene cut

	Le_point
	color, transparency, movement in all the directions

	Autumn_leaves
	color, landscape, zooming, water fall movement

	Football
	color, movement

	Sailboat
	almost still

	Susie
	skin color

	Tempete
	color, movement


Table d.  Test sequences used to determine test factors, coding technologies and applications for which the VQM has shown the specified accuracy.

5.     Accuracy of a VQM.  

In order to use an objective video-quality metric (VQM) in any contractual situation, one must know whether the score difference between two processed videos is statistically significant.  Hence, a quantification is needed of the accuracy (or resolving power) of the VQM.   To visualize this resolving power, it helps to begin with a notional scatter plot in which the abscissa of each point is a VQM score from a particular video source (SRC) and distortion (Hypothetical Reference Circuit, or HRC), and the ordinate is a subjective score from a particular viewing of the SRC/HRC.  Each SRC/HRC combination (associated with a particular VQM score) contains a distribution of subjective scores S, which represents (approximately) the relative probabilities of S for the particular SRC/HRC combination.  The resolving power of a VQM can be defined as the difference VQM value above which the conditional subjective-score distributions have means that are statistically different from each other (typically at the 0.95 significance level). 

Given this qualitative picture, two metrics for resolving power will be described in this section, each one useful in a different context.  The metrics are described in sections 5.2 and 5.3. Also, in Section 5.4, a method is described for evaluating the frequencies of different kinds of errors made by the VQM.  As an example of implementation of all the methods, a computer source code in MATLAB is provided in Annex B.

5.1  Nomenclature and Coordinate Scales.

Let each SRC/HRC combination in a data set be called a “situation”, and let N be the number of situations in this data set. A subjective score for situation i and Viewer k will be denoted as 
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, and an objective score for situation i will be denoted as 
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. Averaging over a variable such as viewer will be denoted with a dot in that variable location. For instance, the mean opinion score of a situation will be denoted as 
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. The subjective-score statistics from each pair (i, j) of these situations are to be assessed for significance of VQM difference, and then used to arrive at a resolving power for the VQM difference, as a function of the VQM value.

Prior to any statistical analysis, the subjective data are linearly transformed to the interval [0,1], defined as the Common Scale.  For example, the subjective mean opinion scores (
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) are linearly scaled to a nominal range of [0, 1], where zero represents no impairment (i.e., the best rating) and one represents maximum impairment (i.e., the worst rating). This linear scaling is performed using the numerical values that were assigned to the endpoints of the subjective rating scale. Thus, the scaled subjective mean opinion scores 
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Next, the VQM scores are transformed to this Common Scale, by fitting a monotonic transformation of the VQM scores to the particular subjective data set.  The original (native-scale) objective scores are denoted 
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, the common-scale objective scores are denoted by 
[image: image8.wmf]i

O

ˆ

, and a fitting function F (depending on some fitting parameters) connects the two such that the latter domain is the best linear fit to the subjective data.  Figure 2 shows the improved fit of model to data incurred by transforming the objective scores using a fitting function.    It can be seen that, besides improving the fit of data with VQM, the curve also offers another additional advantage over the straight-line fit implied by the native scale:  the distribution of model-to-data errors around the fitted model curve is less dependent on the VQM score.  

Figure 2.  Improved fit of data to VQM by mapping VQM to common scale.
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The function used to fit the objective VQM data (
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) to the scaled subjective data (
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) must have the following three attributes:  (a) A specified domain of validity, which should include the range of  VQM data for all the situations used to define the accuracy metric; (b) A specified range of validity, defined as the range of common-scale scores (a sub-range of [0,1]) to which the function maps; and  (c) Monotonicity (the property of being either strictly increasing or strictly decreasing) over the specified domain of validity.   Of course, the fitting function would be most useful as a cross-calibration tool if it were monotonic over the entire theoretical domain of VQM scores, cover the entire subjective common scale from 0 to 1, and map to zero the VQM score that corresponds to a perfect video sequence (no degradations, hence a null HRC).   However, it is recognized that this ideal may not be attainable for certain VQMs and function families used to perform the fit.   

One possible family of fitting functions is the set of polynomials of order M.  Another is a logistic function with the form  
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 = a + b/{1 + c(
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+d)e}, where a, b, c, d, and e are fitting parameters
.  A third possibility is a logistic function with the form 
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 = a + (b-a)/{1 + exp[-c(
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- d)]}, where a, b, c, d are fitting parameters and c > 0.
  For convenience, we call these logistic forms Logistic I and Logistic II, respectively.   The MATLAB code in Annex B instantiates only a polynomial fit.  Annex C discusses possible methods of data fitting using the logistic functions.

The number of degrees of freedom used up by the fitting process is denoted by D.  For example, if a linear fit is used, D = 2 since two free parameters are estimated in the fitting procedure.  The fitting function that transforms objective VQM to the common scale is reported to facilitate industry comparison of two VQMs.

Once transformed to the Common Scale, any VQM can be cross-calibrated to any other VQM through the common scale.  In this domain the accuracy of a VQM facilitates comparisons between VQMs, and may ultimately be the standard domain of discourse. Also, subject to the assumption that the resolving power in the common scale does not much vary with the VQM score at which the resolving power is evaluated, the resolving power can be mapped through the inverse of the logistic function to the native scale.  In the native scale, the delta-VQM from the common scale generates a VQM-score-dependent resolving power.  A table of such resolving powers (one at each VQM score in native scale) will have immediate meaning for users of the native scale. 

5.2.  METRIC 1.  VQM Accuracy Based on Statistical Significance.  

Of several possible approaches to assessing a VQM’s resolving power, the Student’s t test was chosen.  This test was applied to the measurements in all pairs i and j of situations. Emerging from the test are the (VQM (i.e., the difference between the greater and lesser VQM score of i and j) and the significance from the t test.  This significance is the probability p that, given i and j, the greater VQM score comes from measurements with a greater mean subjective score.  Thus, p is the probability that the observed difference in sample means of the subjective scores from i and j did not come from a single population mean, nor from population means that were ordered oppositely to the associated VQM scores. To capture this ordering requirement, the t-test was chosen to be one-tailed.  Also, for simplicity, the t test was approximated by a z test.  

The algorithm has the following steps:
1.  Start with an input data table with N rows, each represents a different situation--i.e., a different source video and/or distortion.  Each row i consists of the following: the source number, the distortion number, the VQM score 
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, the number of responses Ni , the mean subjective score 
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 , and the variance of the subjective scores Vi .  (Note:  It does not matter in this algorithm whether the subjective scores are in their Common or Native Scale, because the statistic noted below is invariant to this transformation.  We henceforth refer to the scores as being in the Common Scale.)

2. If the Subjective Scores are in a Native Scale, transform them to Common Scale using the method in Section 5.1.  Also, transform the VQM scores 
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to the VQM Common Scale, as discussed in Section 5.1, and amplified in Annex C. 

The result of the fitting process will be a set of Common-Scale VQM scores 
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.  Display the coefficient values used in the fit, and also the VQM domain over which the fit was done (domain of validity).

3.  For each pair of distinct situations i and j, use a one-tailed z test to assign a probability of significance to the difference between the greater and the lesser VQM (
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 and 
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, respectively). The significance is the probability that the greater VQM score comes from measurements with a greater mean subjective score.  In execution of this step, choose a simple z-test when the number of degrees of freedom is 70 or greater (as in the test performed by VQEG).  The z score is 
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and the cumulative distribution function 

cdf(z) = 
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exp(-z2/2) dz  

is the probability of significance (p).

4.   Create a scatter plot of cdf(z) (ordinate) versus (VQM-Score (abscissa). Given N situations, record each pair (i, j) with i>j, record the VQM difference 
[image: image23.wmf]i

O

ˆ

– 
[image: image24.wmf]j

O

ˆ

 in an array of dimension N(N-1)/2 , called (VQM (with index k), and the corresponding z value in an array called z with dimension N(N-1)/2 (with the same index k).  It is desired to ensure that (VQM(k) is always nonnegative, which can be ensured by definition of the otherwise arbitrary ordering of the endpoints i and j.   To ensure that this is so, if (VQM(k)   is negative, then replace z(k) by -z(k) and (VQM(k)  by -(VQM(k).  

5.  Consider 21 bins (indexed by m) of (VQM, each one of which spans 1/10 the total range of (VQM, and which adopts as its midpoint as its assigned (VQM value, (VQMm.  The bins have a 50 percent overlap.  Evaluate the average of the significance probabilities, Pm, within each bin.  

6.  Draw a curve (computationally) through the points ((VQMm, Pm), to form the "average probability of significance" versus (VQM.

7.    Select a threshold probability p, draw a horizontal line at the ordinate value p, and let its intercept with the curve of step 5 determine the threshold (VQM that will be defined as the accuracy.  For an average probability of significance of p or greater, the (VQM should exceed this threshold.  Commonly used values of p are 0.68, 0.75, 0.90, and 0.95.

8.  Having found a value of (VQM for a particular value of p, inverse-map this (VQM value back into the native scale to produce a resolving power R as a function of the native objective score O:

R(O) = | F-1 [F(O) + (VQM] – O|.

Here, F is given as in Step 2.  For polynomial F, F-1 must be derived numerically unless the order is low.  For the Logistic I function defined in Section 5.1, the inverse is  F-1(x) = [(1/c)(b/[x-a]) – 1]1/e – d.  for the Logistic II function defined in Section 5.1, the inverse is F-1(x) =  d – (1/c)ln[(b-a)/(x-a) – 1]. 

The monotonicity of F over the chosen domain makes these inversions unique, and the logistic function makes the inversion possible in closed form. 

NOTE:  Whether in common or native scale, the plots of subjective z-score versus (VQM described in the last two sections can be exploited in other ways to visualize the frequencies of various sorts of errors (see Annex C, and also the MATLAB code in Annex B).  

5.3.  METRIC 2:  VQM RMSE Calculation
For a simple alternative assessment of accuracy, one can also use the root-mean-squared error (RMSE).  The basic idea behind the VQM RMSE calculation is to quantify the mean squared error (MSE) between fitted objective data and corresponding subjective data.  The VQM RMSE between the fitted objective data 
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 and the scaled subjective data 
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 is computed as
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where N is the total number of situations (equal to IJ, where J is the number of scenes and I is the number of HRCs), and D is the degrees of freedom used up by the objective to subjective curve fitting performed in Section 3.2.2.

5.4   Classification Plots.

Although not advanced here as a direct metric of accuracy, the following plots are quite helpful for assessing frequencies of certain types of error incurred by the VQM.  They are computed by the MATLAB code of Annex B, and explained in more detail in Annex D.

That portion of the code calculates and plots the relative frequencies of three types of classification errors.  A classification error is made when the subjective test and the VQM lead to different conclusions on a pair of data points. 

Background:  For any subjective test, one must set a threshold that will determine when two results are statistically equivalent, and when they are statistically distinguishable.  Then for each pair of data points (A,B), the subjective test can yield one of three possible outcomes: (1) A better than B, (2) A same as B, and (3) A worse than B.

If we define a similar threshold for VQM values, we have the same situation.  For each pair of data points, the VQM can yield one of three possible outcomes: (1) A better than B, (2) A same as B, and (3) A worse than B.  Each pair of data points undergoes three-way classification by the subjective test and three-way classification by the VQM. Thus there are nine possible outcomes.  For three of these outcomes, the subjective test and the VQM agree.  If we take the subjective test to be correct by definition, and the VQM to be under test, then we say that for these three outcomes, the VQM is correct.  In two other cases the VQM has committed the "false-tie" error (subjective test says A better than B, or A worse than B, but the VQM says A same as B).  In two other cases the VQM has committed the "false differentiation" error (subjective test says A same as B, but VQM says A is better than B, or A is worse than B.)  Finally, there are two cases where the VQM has performed a false ranking (subjective test says A better than B, or A worse than B, but VQM says the opposite.)  Thus, all nine outcomes are represented.  Note that one could draw a 3x3 grid in ((VQM, subjective Z score) space describing the above.

In the code below, the threshold used for the subjective test is subj_th. The threshold used for the (VQM is vqm_th and this is left as a free  parameter.  The code plots the frequency of occurrence for the three different kinds of errors and for no error vs. vqm_th.  An optimal value of vqm_th might be one that maximizes the frequency of occurrence of no error, or one that minimizes a cost-weighted sum of the errors.  Note that in general, it is likely that false ties will be the least offensive error, false differentiations will be more offensive, and false rankings will be the worst sort of error. 

For more details, see S. Voran, "Techniques for Comparing Objective and  Subjective Speech Quality Tests," Proceedings of the Speech Quality Assessment Workshop, Bochum, Germany, November 1994.

Note: The nine outcomes and the three by three grid in ((VQM, subjective Z score) space is the most natural way to describe this analysis.  This assumes bipolar values for (VQM.  But the code has already taken the absolute value of (VQM (and replaced Z with -Z for all points with negative values of (VQM). This does not change the mathematics, but the more natural description of the situation is now 6 outcomes and a 2 by 3 grid.  Two correct outcomes (A better than B and A worse than B) have been folded on top of each other.  There are still two false tie outcomes, but only one false differentiation outcome and one false ranking outcome.

6.  Cross-Calibrating two VQMs. 
The need to relate two VQMs is met by the transformation to a common scale described in Section 5.1.   Once two VQMs (say, VQM1 and VQM2) are transformed to the common scale (through an agreed-upon subjective dataset), the transformation from VQM1 to VQM2 is simply the forward transformation from VQM1 to the common scale, composed with the inverse transformation from VQM2 to the common scale.   Models to be compared have to be referenced to a common dataset.  In cases for which the domains or ranges of the mapping mismatch, the cross-calibration must be declared to be undefined.

7.  Submitting a Candidate VQM to T1A1.  To submit a candidate VQM, the first step is to document it according to Sections 3.1-3.4 above.  This documentation should be contributed to T1A1.
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Annex B – MATLAB Source Code

(Informative)

Below is a MATLAB subroutine called vqm_accuracy.m. This version scales the subjective data to [0,1], applies a polynomial fit of the objective to the scaled subjective data, calculates all the metrics, and plots the VQM frequencies of 'False Tie', 'False Differentiation','False Ranking', and 'Correct Decision'.  

Usage:  At the matlab prompt, type: 

>load vqeg_525_noh263 

>vqm_accuracy(p0,-1,0,100,2) 

>vqm_accuracy(p2,1,0,100,2)

Here, vqeg_525_noh263 is a “mat” environment that contains a file for VQEG 525-line data with no H.263 distortion.   Each line in this file corresponds to a situation, and comprises an SRC number, an HRC number, number of viewings, mean subjective score, and subjective-score variance.  

In the first calling argument of vqm_accuracy, p0 corresponds to the PSNR model in TR A3, and p2 corresponds to the PQR model in TR A4.   The second argument is 1 if the objective metric indicates worse image quality when it is larger, else the argument is –1.  The third and fourth arguments are the nominal best and worst ratings on the native subjective scale.  The final argument is the order of the polynomial to which the VQM is fit.  

Source Code:

function vqm_accuracy (data_in, vqm_sign, best, worst, order)

% MATLAB function vqm_accuracy (data_in, vqm_sign, best, worst, order)

%

% Each row of the input data matrix data_in must be organized as 

% [src_id  hrc_id  vqm  num_view  mos  variance], where

%

%    src_id is the scene number

%    hrc_id is the hypothetical reference circuit number

%    vqm is the video quality metric score for this src_id x hrc_id

%    num_view is the number of viewers that rated this src_id x hrc_id

%    mos is the mean opinion score of this src_id x hrc_id

%    variance is the variance of this src_id x hrc_id

%

%    The total number of src x hrc combinations is size(data_in,1).

%

% vqm_sign = 1 or -1 and gives the direction of vqm with respect to

%            the common subjective scale.  For instance, since "0" is

%            no impairment and "1" is maximum impairment on the common

%            scale, vqm_sign would be -1 for PSNR since higher values

%            of PSNR imply better quality (i.e., this is opposite to

%            the common subjective scale).

%

% mos and variance will be linarly scaled such that 

%    best is scaled to zero (i.e., the best subjective rating)

%    worst is scaled to one (i.e., the worst subjective rating)

%

% order is the order of the polynomial fit used to map the objective data 

% to the scaled subjective data (e.g., order = 1 is a linear fit).

%

% Number of src x hrc combinations

num_comb = size(data_in,1);

% Pick off the vectors we will use from data_in

vqm = data_in(:,3);

num_view = data_in(:,4);

mos = data_in(:,5);

variance = data_in(:,6);

% Scale the subjective data for [0,1]

mos = (mos-best)./(worst-best);

variance = variance./((worst-best)^2);

% Fit the objective data to the scaled subjective data.

format('long');

% uncontrained optimization, monotonicity not guaranteed

%fit = polyfit(vqm,mos,order)

% Following code implements monotonic polynomial fitting using optimization

% toolbox routine lsqlin.

%

% Create x and dx arrays.  For the dx slope array (holds the derivatives of

% mos with respect to vqm), the vqm_sign specifies the direction of the slope

% that must not change over the vqm range.

x = ones(num_comb,1);

dx = zeros(num_comb,1);

for col = 1:order

    x = [x vqm.^col];

    dx = [dx col*vqm.^(col-1)];

end

% The lsqlin routine uses <= inequalities.  Thus, if vqm_sign is -1 (negative

% slope), we are correct but if vqm_sign is +1 (positive slope), we must 

% multiple each side by -1.

if (vqm_sign == 1)

    dx = -1*dx;

end

fit = lsqlin(x,mos,dx,zeros(num_comb,1));

fit = flipud(fit)' % organize this fit same as what is output by polyfit

% vqm fitted to mos

vqm_hat = polyval(fit,vqm);

% Perform the vqm RMSE calculation using vqm_hat.

vqm_rmse = (sum((vqm_hat-mos).^2)/(num_comb-(order+1)))^0.5

% Perform the vqm resolution measurement on both vqm and vqm_hat.

vqm_pairs = repmat(vqm,1,num_comb)-repmat(vqm',num_comb,1);

vqm_hat_pairs = repmat(vqm_hat,1,num_comb)-repmat(vqm_hat',num_comb,1);

mos_pairs = repmat(mos,1,num_comb)-repmat(mos',num_comb,1);

stand_err_diff = sqrt(repmat(variance./num_view,1,num_comb)+ ...

    repmat((variance./num_view)',num_comb,1));

z_pairs = mos_pairs./stand_err_diff;

% Include everything above the diagonal.

delta_vqm = [];

delta_vqm_hat = [];

z = [];

for col = 2:num_comb

    delta_vqm = [delta_vqm; vqm_pairs(1:col-1,col)];

    delta_vqm_hat = [delta_vqm_hat; vqm_hat_pairs(1:col-1,col)];

    z = [z; z_pairs(1:col-1,col)];

end

% Switch on z and delta_vqm for negative delta_vqm

z_vqm = z;

negs_vqm = find(delta_vqm < 0);

delta_vqm(negs_vqm) = -delta_vqm(negs_vqm);

z_vqm(negs_vqm) = -z_vqm(negs_vqm);

z_vqm_hat = z;

negs_vqm_hat = find(delta_vqm_hat <0);

delta_vqm_hat(negs_vqm_hat) = -delta_vqm_hat(negs_vqm_hat);

z_vqm_hat(negs_vqm_hat) = -z_vqm_hat(negs_vqm_hat);

% Plot scatter plot of z_vqm versus delta_vqm in figure 1.

% Plot scatter plot of z_vqm_hat versus delta_vqm_hat in figure 2.

figure(1)

plot(delta_vqm,z_vqm,'.','markersize',1)

set(gca,'LineWidth',1)

set(gca,'FontName','Ariel')

set(gca,'fontsize',12)

xlabel('Delta VQM')

ylabel('Subjective Z Score')

%title(sprintf('Raw Data'))

grid on

print -depsc2 -tiff figure1

figure(2)

plot(delta_vqm_hat,z_vqm_hat,'.','markersize',1)

set(gca,'LineWidth',1)

set(gca,'FontName','Ariel')

set(gca,'fontsize',12)

xlabel('Delta VQM Hat')

ylabel('Subjective Z Score')

%title(sprintf('Raw Hat Data'))

grid on

print -depsc2 -tiff figure2

% Plot average confidence that vqm(2) is worse than vqm(1) in figure 3.

% Plot average confidence that vqm_hat(2) is worse than vqm_hat(1) in 

% figure 4.

cdf_z_vqm = .5+erf(z_vqm/sqrt(2))/2;

cdf_z_vqm_hat = .5+erf(z_vqm_hat/sqrt(2))/2;

% One control parameter for delta_vqm resolution plot; number of vqm bins

% equally spaced from min(delta_vqm) to max(delta_vqm).

% Sliding neighbood filter with 50% overlap means that there will actually

% be vqm_bins*2-1 points on the delta_vqm resolution plot.

vqm_bins = 10; % How many bins to divide full vqm range for local averaging

vqm_low = min(delta_vqm); % lower limit on delta_vqm

vqm_high = max(delta_vqm); % upper limit on delta_vqm

vqm_step = (vqm_high-vqm_low)/vqm_bins; % size of delta_vqm bins

vqm_hat_low = min(delta_vqm_hat);

vqm_hat_high = max(delta_vqm_hat);

vqm_hat_step = (vqm_hat_high-vqm_hat_low)/vqm_bins;

% lower, upper, and center bin locations

low_limits = [vqm_low:vqm_step/2:vqm_high-vqm_step];

high_limits = [vqm_low+vqm_step:vqm_step/2:vqm_high];

centers = [vqm_low+vqm_step/2:vqm_step/2:vqm_high-vqm_step/2];

hat_low_limits = [vqm_hat_low:vqm_hat_step/2:vqm_hat_high-vqm_hat_step];

hat_high_limits = [vqm_hat_low+vqm_hat_step:vqm_hat_step/2:vqm_hat_high];

hat_centers = [vqm_hat_low+vqm_hat_step/2:vqm_hat_step/2: ...

        vqm_hat_high-vqm_hat_step/2];

mean_cdf_z_vqm = zeros(1,2*vqm_bins-1);

mean_cdf_z_vqm_hat = zeros(1,2*vqm_bins-1);

for i=1:2*vqm_bins-1

    in_bin = find(low_limits(i) <= delta_vqm & delta_vqm < high_limits(i));

    hat_in_bin = find(hat_low_limits(i) <= delta_vqm_hat & ...

        delta_vqm_hat < hat_high_limits(i));

    mean_cdf_z_vqm(i) = mean(cdf_z_vqm(in_bin));

    mean_cdf_z_vqm_hat(i) = mean(cdf_z_vqm_hat(hat_in_bin));

end

% The x-axis is vqm(2)-vqm(1).  For figure 3 (the vqm plot), if vqm_sign is 

% 1, then the Y-axis is the average confidence that vqm(2) is worse than 

% vqm(1).  On the other hand, if vqm_sign is -1, then the Y-axis is the

% average confidence that  vqm(1) is worse than vqm(2).  Figure 4 is the plot

% for vqm_hat, and since it always has the same sign as mos, the Y-axis is

% always the average confidence that vqm_hat(2) is worse than vqm_hat(1).

if (vqm_sign == 1)

    figure(3)

    plot(centers,mean_cdf_z_vqm)

    grid

    set(gca,'LineWidth',1)

    set(gca,'FontName','Ariel')

    set(gca,'fontsize',11)

    xlabel('VQM(2)-VQM(1)')

    ylabel('Average Confidence VQM(2) is worse than VQM(1)')

%    title('VQM Resolving Power')

    print -depsc2 -tiff figure3

else

    figure(3)

    plot(centers,1-mean_cdf_z_vqm)

    grid

    set(gca,'LineWidth',1)

    set(gca,'FontName','Ariel')

    set(gca,'fontsize',11)

    xlabel('VQM(2)-VQM(1)')

    ylabel('Average Confidence VQM(1) is worse than VQM(2)')

%    title('VQM Resolving Power')

    print -depsc2 -tiff figure3

end

figure(4)

plot(hat_centers,mean_cdf_z_vqm_hat)

grid

set(gca,'LineWidth',1)

set(gca,'FontName','Ariel')

set(gca,'fontsize',11)

xlabel('VQM Hat(2) - VQM Hat(1)')

ylabel('Average Confidence VQM Hat(2) is worse than VQM Hat(1)')

%title('VQM Hat Resolving Power')

print -depsc2 -tiff figure4

% This portion of the code calculates and plots the relative frequencies of 

% three types of classification errors.  A classification error is made when

% the subjective test and the VQM lead to different conclusions on a pair

% of data points. 

%

% Background:  For any subjective test, one must set a threshold that will 

% determine when two results are statistically equivalent, and when they are

% statistically distinguishable.  Then for each pair of data points (A,B), 

% the subjective test can yield one of three possible outcomes: (1) A better

% than B, (2) A same as B, and (3) A worse than B.

%

% If we define a similar threshold for VQM values, we have the same 

% situation.  For each pair of data points, VQM can yield one of three 

% possible outcomes: (1) A better than B, (2) A same as B, and (3) A worse 

% than B. Since each pair of data points undergoes three-way classification 

% by the subjective test and three-way classification by the VQM, there are 

% nine possible outcomes.  For three of these outcomes, the subjective test

% and the VQM agree.  If we take the subjective test to be correct by 

% definition, and the VQM to be under test, then we say that for these three

% outcomes, the VQM is correct.  In two other cases the VQM has committed the

% "false-tie" error (subjective test says A better than B, or A worse than B,

% but VQM says A same as B).  In two other cases the VQM has committed the 

% "false differentiation" error (subjective test says A same as B, but VQM

% says A better than B, or A worse than B.)  Finally, there are two cases 

% where the VQM has performed a false ranking (subjective test says A better

% than B, or A worse than B, but VQM says the opposite.)  Thus, all nine 

% outcomes are accounted for.  Note that a three by three grid in 

% (delta_vqm, subjective Z score) space describing the above could be drawn.

%

% In the code below, the threshold used for the subjective test is subj_th. 

% The threshold used for the delta VQM is vqm_th and this is left as a free 

% parameter.  The code plots the frequency of occurrence for the three

% different kinds of errors and for no error vs. vqm_th.  An optimal value of

% vqm_th might be one that maximizes the frequency of occurrence of no error,

% or one that minimizes a cost-weighted sum of the errors.  Note that in 

% general, it is likely that false ties will be the least offensive error, 

% false differentiations will be more offensive, and false rankings will be 

% the worst sort of error. 

%

% For more details, see S. Voran, "Techniques for Comparing Objective and 

% Subjective Speech Quality Tests," Proceedings of the Speech Quality 

% Assessment Workshop, Bochum, Germany, November 1994.

%

% Note: The nine outcomes and the three by three grid in (delta_vqm, 

% subjective Z score) space is the most natural way to describe this 

% analysis.  This assumes bipolar values for delta_vqm.  But the code has 

% already taken the absolute value of delta_vqm (and replaced Z with -Z for 

% all points with negative values of delta_vqm). This does not change the 

% math, but the more natural description of the situation is now 6 outcomes 

% and a 2 by 3 grid.  Two correct outcomes (A better than B and A worse 

% than B) have been folded on top of each other.  There are still two false 

% tie outcomes, but only one false differentiation outcome and one false 

% ranking outcome.

% Figure 5 is the plot for vqm and figure 6 is the plot for vqm_hat.

subj_th = 1.6;  % 95 percent confidence

num_th = 50;  % number of delta_vqm thresholds to examine

vqm_th_list = [vqm_low:(vqm_high-vqm_low)/num_th:vqm_high];

vqm_hat_th_list = [vqm_hat_low:(vqm_hat_high-vqm_hat_low)/num_th: ...

        vqm_hat_high];

rel_freqs = zeros(vqm_bins+1,4);

rel_hat_freqs = zeros(vqm_bins+1,4);

for i = 1:num_th+1

    vqm_th = vqm_th_list(i);

    vqm_hat_th = vqm_hat_th_list(i);

    % Number of data points in the false tie region

    rel_freqs(i,1) = length(find((delta_vqm < vqm_th) & ...

        (subj_th <= abs(z_vqm))));

    rel_hat_freqs(i,1) = length(find((delta_vqm_hat < vqm_hat_th) & ...

        (subj_th <= abs(z_vqm_hat))));

    % Number of data points in the false differentiation region

    rel_freqs(i,2) = length(find((vqm_th <= delta_vqm) & ...

        (abs(z_vqm) < subj_th)));

    rel_hat_freqs(i,2) = length(find((vqm_hat_th <= delta_vqm_hat) & ...

        (abs(z_vqm_hat) < subj_th)));

    % Number of data points in the false ranking region

    if (vqm_sign == 1)

        rel_freqs(i,3) = length(find((vqm_th <= delta_vqm) & ...

            (z_vqm <= -subj_th)));

    else

        rel_freqs(i,3) = length(find((vqm_th <= delta_vqm) & ...

            (z_vqm >= subj_th)));

    end

    rel_hat_freqs(i,3) = length(find((vqm_hat_th <= delta_vqm_hat) & ...

        (z_vqm_hat <= -subj_th)));

end

% Normalize counts by total number of points to get relative frequencies

rel_freqs = rel_freqs/length(z_vqm);

rel_hat_freqs = rel_hat_freqs/length(z_vqm_hat);

% Calculate relative frequency of correctness

rel_freqs(:,4) = (1-sum(rel_freqs(:,1:3)'))';

rel_hat_freqs(:,4) = (1-sum(rel_hat_freqs(:,1:3)'))';

% Figure 5 is plot for vqm and figure 6 is plot for vqm_hat.

figure(5)

plot(vqm_th_list,rel_freqs(:,1),'m-.', vqm_th_list,rel_freqs(:,2),'r:', ...

    vqm_th_list,rel_freqs(:,3),'k-',vqm_th_list,rel_freqs(:,4),'b--');

grid

set(gca,'LineWidth',1)

set(gca,'FontName','Ariel')

set(gca,'fontsize',12)

xlabel('Delta VQM Significance Threshold')

ylabel('Relative Frequencies')

legend('False Tie','False Differentiation','False Ranking','Correct Decision')

%title('VQM Subjective Classification Errors')

print -depsc2 -tiff figure5

figure(6)

plot(vqm_hat_th_list,rel_hat_freqs(:,1),'m-.', ...

    vqm_hat_th_list,rel_hat_freqs(:,2),'r:', ...

    vqm_hat_th_list,rel_hat_freqs(:,3),'k-', ...

    vqm_hat_th_list,rel_hat_freqs(:,4),'b--');

grid

set(gca,'LineWidth',1)

set(gca,'FontName','Ariel')

set(gca,'fontsize',12)

xlabel('Delta VQM Hat Significance Threshold')

ylabel('Relative Frequencies')

legend('False Tie','False Differentiation','False Ranking','Correct Decision')

%title('VQM Hat Subjective Classification Errors')

print -depsc2 -tiff figure6

Annex C – Data-Fitting to a Common Scale of VQM

(Informative)

As discussed in Section 5.1 of the main text, the objective VQM data (
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)  are mapped to a new domain 
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 ).  This domain is derived by fitting 
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to the scaled subjective data (
[image: image32.wmf]·

i

S

ˆ

) using a family of functions F (with fitting parameters) that have the properties of monotonicity and range mapping noted in Section 5.1.    The following are three alternative choices for the form of F, together with notes on data fitting using these functional forms.

C.1.  Polynomial of order M.  A polynomial that is fit to a set of data points is not guaranteed to be monotonic.  The MATLAB optimization toolbox has a function lsqlin that ensures monotonicity over the extent of the data. However, monotonicity over the existing data domain does not ensure monotonicity over the entire theoretical domain (for example, 0 to infinity).  

C.2.  Logistic Function I.   Fitting the objective VQM data (
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) to the scaled subjective data (
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) can be done using a logistic function 
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where a, b, c, d, and e are fitting parameters.  The fit function must be derived by nonlinear least squares. (see MATLAB notes in the VQEG Final Report
).  The part of the function to be used is the monotonic part for O >-d (hence constrain d > -min(O)), and the s-curve shape appropriate to the data fit is ensured by constraining e > 1. 

In certain cases, at least asymptotically, the perfect score in the native-scale objective model can be made to map to zero (the best score on the subjective scale), and the worst native-scale objective score possible can be made to map to the worst subjective score (unity, on the common scale).  For example, consider the following case:  Best objective score is zero, worst objective score is infinite.  Here zero maps to zero and infinity maps to 1, so a = 1 and b = -(1 + cde), hence F(
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+d)e}.  Fitting would take place on c, d, e, subject to d, e > 0.

C.3.  Logistic Function II.   Fitting the objective VQM data (
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) to the scaled subjective data (
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) can  also be done using a logistic function 
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where a, b, c, and d, and c > 0 (ensured by defining c = |C| for real C).   As with Logistic I, the fit function must be derived by nonlinear least squares
 (see MATLAB subroutines noted on p. 31 of the VQEG Final Report).  

One might use this optimization in the case noted in C.2:  Best objective score is zero, worst objective score is infinite.  Here zero maps to zero and infinity maps to 1, so a = -exp[-cd] and b = -a exp[cd].  Hence F(
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[image: image46.wmf]i

O
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Logistic Function II is also useful in the following case (which could arise when 
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is expressed in logarithmic coordinates such as decibels): Best objective score is infinite, worst objective score is negative- infinite.  In that case infinity must map to 0, and negative infinity must map to 1.  Hence b = 0, a = 1, and F(
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 ) = 1 /[1 + c{exp(
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Annex D - Description of Classification Errors

(Informational)

Classification errors are one way to evaluate the effectiveness of a Video Quality Metric (VQM). This annex discusses the meaning of the classification errors, in terms of the plots of subjective z score versus delta-VQM described in the main text. For the following description, we are using the common [0, 1] scale for both the subjective and objective scores. For this common [0, 1] scale, “0” represents no impairment and “1” represents maximum impairment.

For any subjective test one can set a threshold Δz, that defines when two data points (A, B) are statistically equivalent and when they are statistically distinguishable
.  Once this has been done, the subjective test results allow one to place each pair of data points (A, B) into one of  three categories:

Δz AB <  - Δz 
→  A is better than B

→  Bs

-Δz  ≤
Δz AB ≤    Δz 
→  A is same as B

→  Es

 Δz <
Δz AB

→  A is worse than B

→  Ws

The abbreviations for the three categories (Bs, Es, and Ws) denote subjectively better, subjectively equivalent, and subjectively worse, respectively.

Now consider a similar threshold for VQM values, Δo:

VQM(A)- VQM (B)  <  - Δo 
→  A is better than B

→  Bo

-Δo  ≤
VQM (A)- VQM (B)  ≤   Δo 
→  A is same as B

→  Eo

 Δo  <
VQM (A)- VQM (B) 

→  A is worse than B

→  Wo

The abbreviations for the three categories (Bo, Eo, and Wo) denote objectively better, objectively equivalent, and objectively worse, respectively.

Since each pair of data points undergoes a three-way classification by the subjective test and a separate three-way classification by the VQM, there are nine possible outcomes.  These nine outcome spaces are illustrated graphically below by the broken lines in the two-dimensional space of subjective-score difference versus VQM difference:
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In the table below, we label each of these nine outcomes with an eye towards answering the question “How does the VQM-based 3-way classification compare with the subjective test-base 3-way classification?”

	
	Bs
	Es
	Ws

	Wo
	False Ranking
	False Differentiation
	Correct Decision

	Eo
	False Tie
	Correct Decision
	False Tie

	Bo
	Correct Decision
	False Differentiation
	False Ranking


Note that for three of the outcomes, the VQM classification agrees with the subjective test classification.  These three outcomes are labeled “Correct Decision.”  The six remaining outcomes correspond to three different types of errors that can arise when using a VQM.  The false tie is probably the least offensive error.  This occurs when the subjective test says two data points are different but the VQM says they are the same.  A false differentiation is usually more offensive.  This occurs when the subjective test says two data points are the same but the VQM says they are different.  The false ranking would generally be the most offensive error.  In false ranking, the subjective test says A is better than B, but the VQM says B is better than A.

For any subjective test and any VQM, we can form all possible distinct pairs of data points and count the number of pairs that fall into each of the four distinct outcome categories:  Correct Decision, False Tie, False Differentiation, and False Ranking.  We can then normalize by the total number of distinct pairs and report relative frequencies for these four outcome categories.  In general these results will be functions of both Δs and Δo.  Example results for a fictitious VQM are given in the graph below.  Δz was selected to give an estimated 95% confidence in the subjective classifications and Δo is the free parameter on the x-axis of the graph.
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Note that as Δo is increased, the VQM will declare more and more pairs of data points as equivalent.  This reduces the occurrences of false differentiations and false rankings, but increases the occurrence of false ties.  As Δo goes to 0.05, the false-tie rate tends towards 0.52.  At this point, the VQM is declaring all pairs to be equivalent, and in doing so the VQM is wrong 52% of the time, and correct 48% of the time.  This is consistent with the fact that in this test, 48% of the pairs of data points were declared equivalent by the subjective test.  One might use a graph like this to select an appropriate value of Δo.  For example, one might select Δo to maximize the probability of making correct decisions, or one might select Δo to minimize some weighted sum of the error relative frequencies.

In the code that generated the above figure (part of the MATLAB code in Annex B), the threshold used for the subjective test is subj_th. The threshold used for the (VQM is vqm_th and this is left as a free  parameter.  The code plots the frequency of occurrence for the three different kinds of errors and for no error vs. vqm_th.  An optimal value of vqm_th might be one that maximizes the frequency of occurrence of no error, or one that minimizes a cost-weighted sum of the errors.  Note that in general, it is likely that false ties will be the least offensive error, false differentiations will be more offensive, and false rankings will be the worst sort of error. 

Note: The nine outcomes and the three by three grid in ((VQM, subjective Z score) space is the most natural way to describe this analysis.  This assumes bipolar values for (VQM.  But the code has already taken the absolute value of (vqm (and replaced Z with -Z for all points with negative values of (VQM). This does not change the mathematics, but the more natural description of the situation is now 6 outcomes and a 2 by 3 grid.  Two correct outcomes (A better than B and A worse than B) have been folded on top of each other.  There are still two false tie outcomes, but only one false differentiation outcome and one false ranking outcome.

Reference: For S. Voran, "Techniques for Comparing Objective and  Subjective Speech Quality Tests," Proceedings of the Speech Quality Assessment Workshop, Bochum, Germany, November 1994.

� EMBED Equation.3  ���





� EMBED PowerPoint.Slide.8  ���











� Video Quality Experts Group (VQEG) Objective Test Plan, 1999.


� Features of the logistic function that render it more attractive than other functions such as the polynomial are noted in ITU-T COM9-80, Rapporteur Q11/12 (VQEG): Final report from the video quality experts group on the validation of objective models of video quality assessment.  


�  A  z-test is used instead of a t-test because the application has features the t model does not capture, so simplicity recommended using z.  The variances can indeed be significantly different, and neither  t nor z model distinguishes the sign of the difference of the means: The magnitude departure from p = .5 is the same whether the departure is positive or negative--unlike what would be the case if the variances were indeed different.  The simple z model is chosen, since refining it to t does not capture the obvious asymmetry in the application.


� “The MATLAB (The Mathworks, Inc., Natick, MA) nonlinear least-squares function nlinfit accepts as input the definition of a function accepting as input a matrix X, the vector of Y values, a vector of initial values of the parameters to be optimized, and the name assigned to the nonlinear model.  The output includes the fitted coefficients, the residuals, and a Jacobian matrix used in later computation of the uncertainty estimates on the fit.  The model definition must output the predicted value of Y given only the two inputs, X and the parameter vector.[…]  A second MATLAB function, nlpredici, is called to compute the final predicted values of Y […], accepting as input the model definition, the matrix X, and the outputs of nlinfit.” ITU-T COM9-80, Rapporteur Q11/12 (VQEG): Final report from the video quality experts group on the validation of objective models of video quality assessment, p. 31.





� See Footnote 4 for the MATLAB description.  On p. 31 of the VQEG final report, the initial values for the parameters were chosen as a = maximum subjective score, b = minimum subjective score, C = 1, and d = mean objective score. 


� The data points A and B actually represent sets of observations of two SRC/HRC combinations.  As discussed in the main text, the quantity Δz AB is the difference in the means of A and B � EMBED Equation.3  ���, divided by the inferred standard deviation � EMBED Equation.3  ��� , where VA is the variance of scores from situation A, and NA is the number of observations from situation A, etc.
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