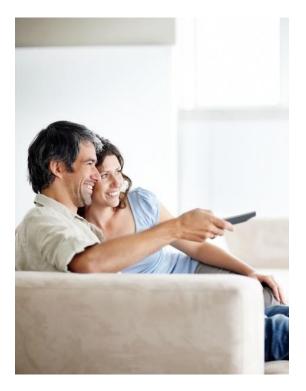


Machine Learning for Quality Assessment Adopt – Adapt – Improve

Adriaan Barri abarri@etro.vub.ac.be Quality of Experience can make or break your product. Do you really want to rely on machines to monitor it?

Audience



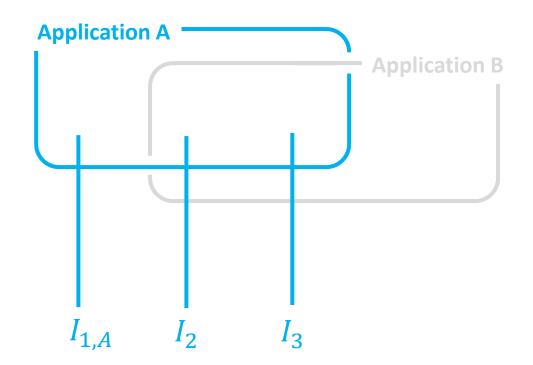
Device

Content

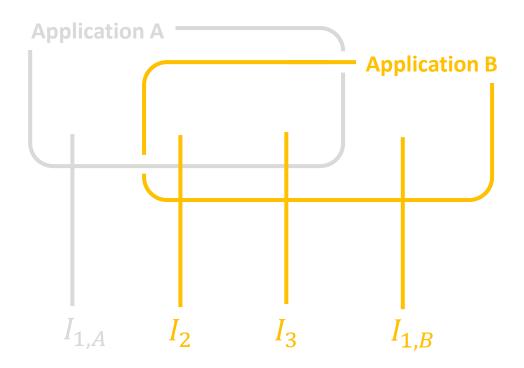
Quality Measure 1

Quality Measure 2

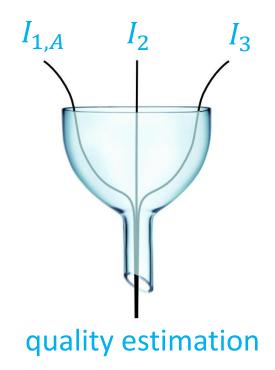
• Carefully select your quality indicators



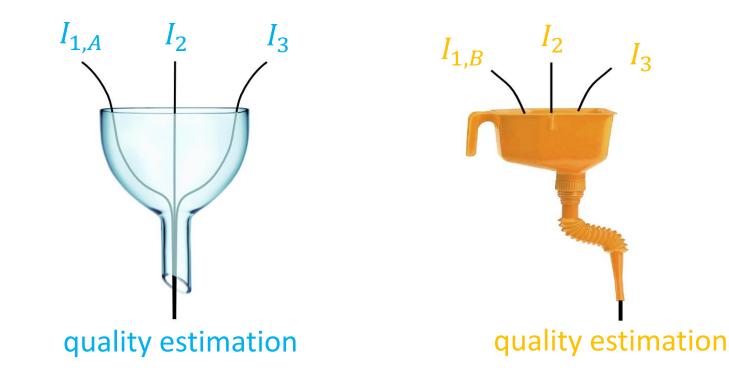
• Carefully **select** your quality indicators



- Carefully **select** your quality indicators
- Carefully **combine** your quality indicators



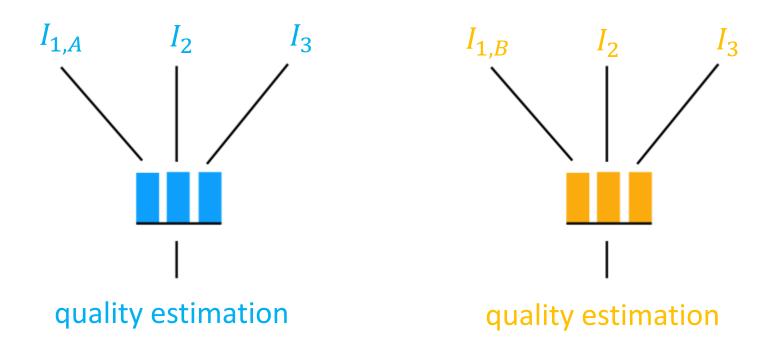
- Carefully **select** your quality indicators
- Carefully combine your quality indicators



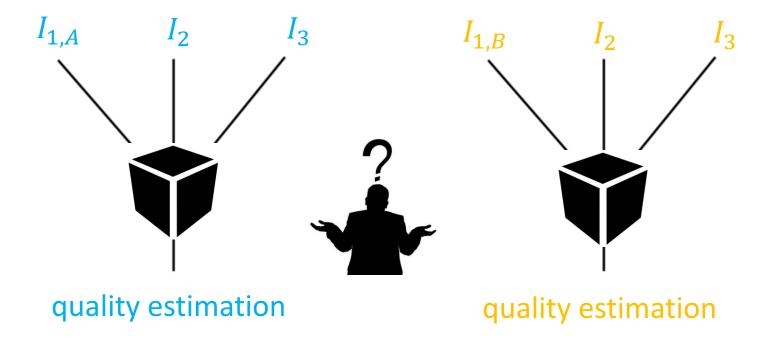
- Carefully **select** your quality indicators
- Carefully **combine** your quality indicators

Do not forget to also optimize your combination method!

Current combination methods are not optimized for quality assessment



Heuristic combination methods do not adapt to the application Current combination methods are not optimized for quality assessment



Traditional machine learning is often difficult to interpret

Machine learning for quality assessment in three steps: adopt, adapt and improve

Adopt machine learning in quality assessment

Adapt machine learning to the quality framework

Improve the reliability of the quality predictions

Machine learning for quality assessment in three steps: adopt, adapt and improve

Adopt machine learning in quality assessment

Adapt machine learning to the quality framework

Improve the reliability of the quality predictions

LOCALLY ADAPTIVE FUSION

For the purpose of quality assessment machine learning is incorporated as follows

1. Select input quality indicators

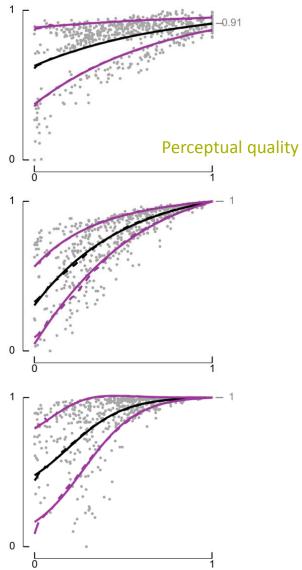
simple, fast formulas for quality predictions in specific content and distortion classes

ADOPT

- 2. Train the ML system on a quality assessment database on which the quality indicators are evaluated and combined to maximize the prediction accuracy
- **3.** Apply the ML system to newly received signals using the weights obtained during training

on the LIVE image database

Predicted quality



Indicator 1 Blockiness

Indicator 2 Information Loss

ADOPT

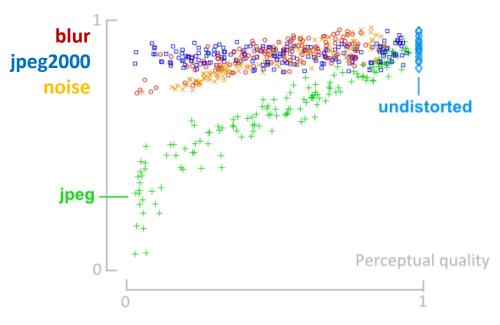
1. Input selection

- 2. Training
- 3. Application

Indicator 3 Contrast Similarity

Indicator 1 Blockiness (LIVE)

Predicted quality



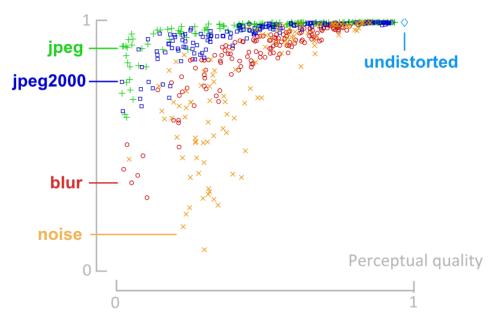
1. Input selection

- 2. Training
- **3. Application**

- jpeg
- only for high distortion rates
- no-reference

Indicator 2 Contrast (LIVE)

Predicted quality



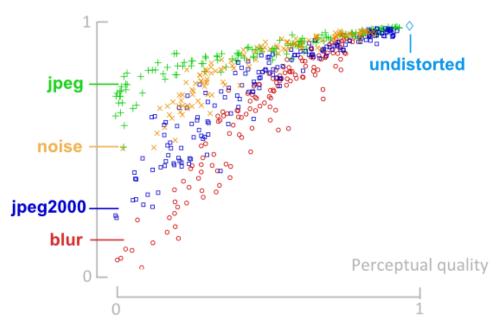
1. Input selection

- 2. Training
- **3. Application**

- noise and blur
- low and high distortion rates
- reduced-reference

Indicator 3 Information loss (NTIA)

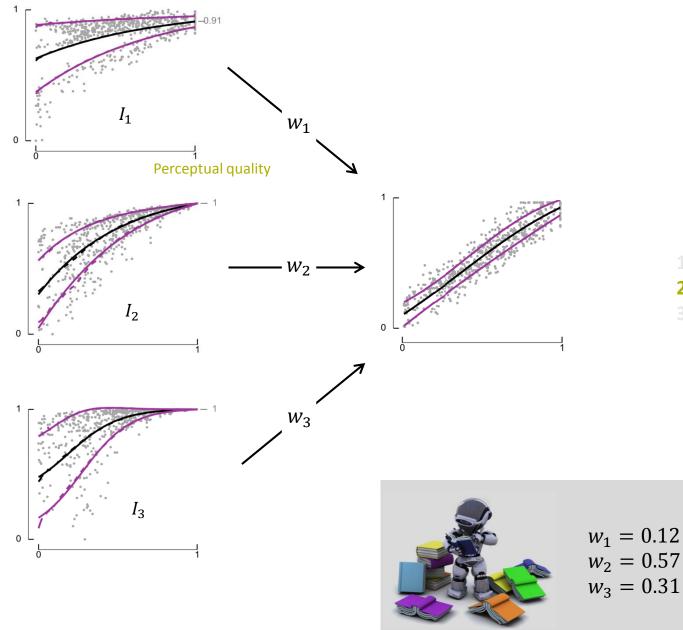
Predicted quality



1. Input selection

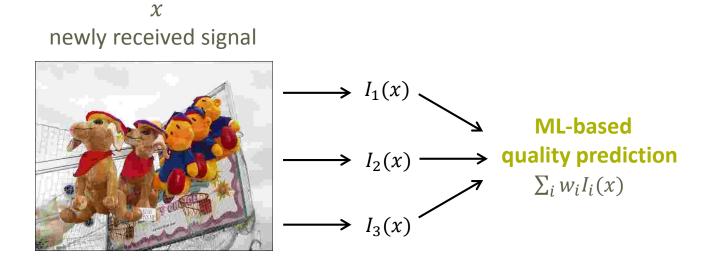
- 2. Training
- **3. Application**

- blur and jpeg2000
- low and high distortion rates
- reduced-reference



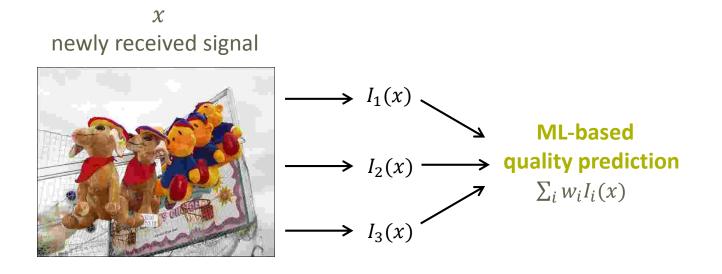
ADOPT

Input selection
 Training
 Application



ADOPT

Input selection
 Training
 Application

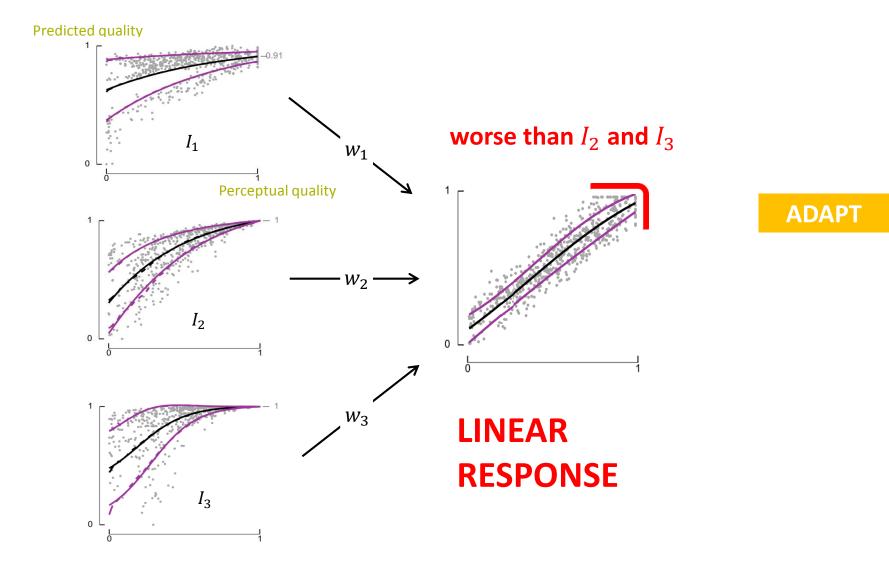


ADOPT

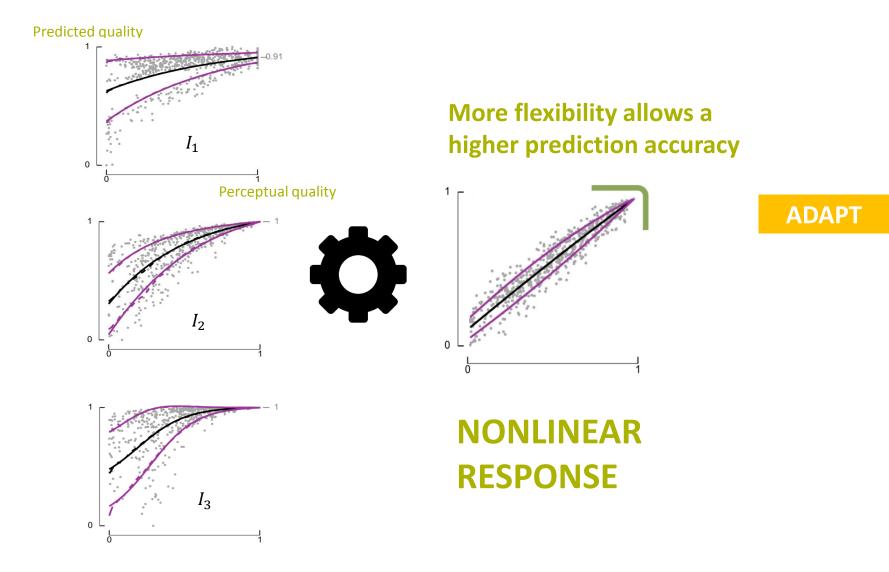
Input selection
 Training
 Application

Simple linear combinations do not provide enough flexibility

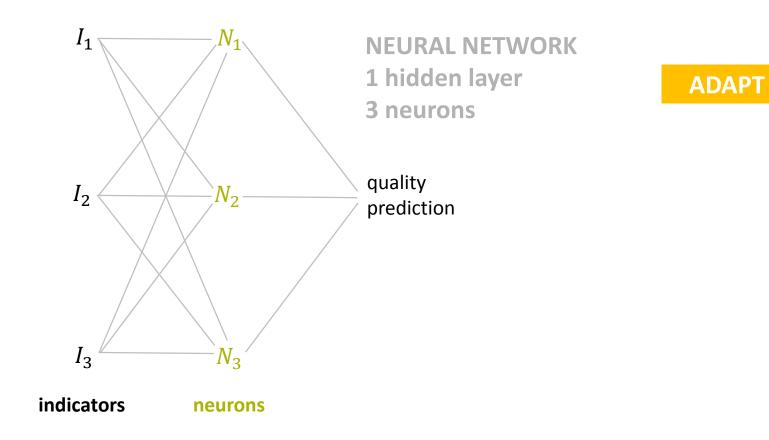
To better adapt to the perceptual mechanisms the ML response is preferably nonlinear



To better adapt to the perceptual mechanisms the ML response is preferably nonlinear

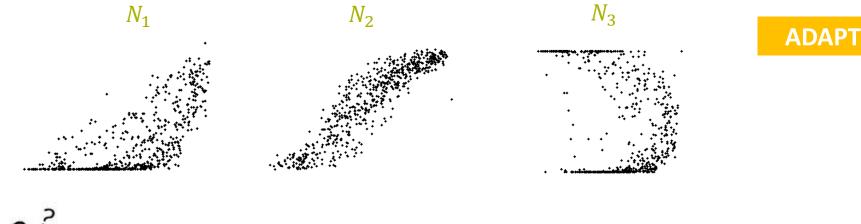


The hidden neurons of neural networks do not necessarily have a meaning



The hidden neurons of neural networks do not necessarily have a meaning

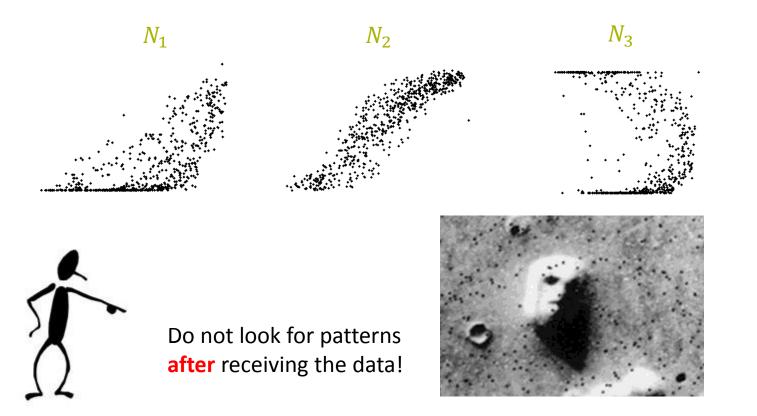
EXAMPLE on the LIVE image database



The hidden neurons of neural networks do not necessarily have a meaning

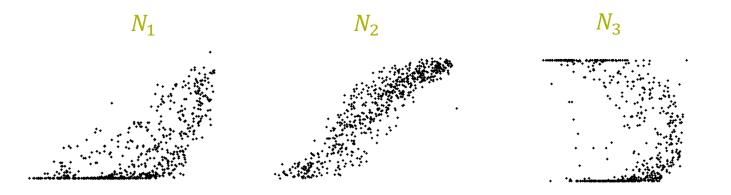
EXAMPLE on the LIVE image database

ADAPT



The hidden neurons of neural networks do not necessarily have a meaning

EXAMPLE on the LIVE image database



ADAPT

The harder it is to interpret the ML behavior The easier it will be to disguise the vulnerabilities

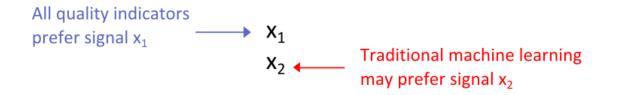
There are plenty of vulnerabilities of traditional machine learning

Many vulnerabilities are found using a large unannotated **stress test database** Idea of F. Ciaramello and A. Reibman

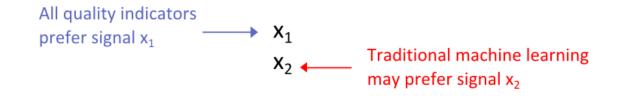
ADAPT

We performed **three stress test** on a database of 650 reference images from Wikimedia Commons and 26000 distorted images

Input quality indicators: Blockiness, Contrast, Information Loss Training database: LIVE image database

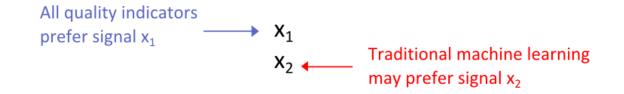


ADAPT



Linear Regression Principal Component Regression (PCR) **Parametric ML** Feed Forward Neural Network (FFNN) Kernel-based ML General Regression Neural Network (GRNN)

ADAPT

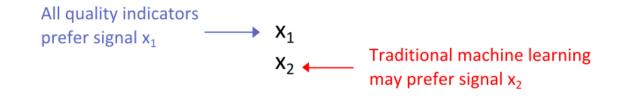


Linear Regression Principal Component Regression (PCR)

Parametric ML Feed Forward Neural Network (FFNN) Kernel-based ML General Regression Neural Network (GRNN)

ADAPT

Linear regression will never cause inconsistencies (when properly trained)

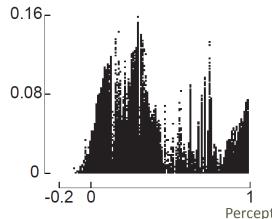


Linear Regression Principal Component Regression (PCR) Parametric ML Feed Forward Neural Network (FFNN) Kernel-based ML General Regression Neural Network (GRNN)

ADAPT

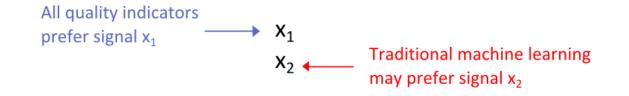
more than **100,000** inconsistencies on the stress test database

Error magnitude up to 16%



Perceptual quality

Stress test 1 Machine learning inconsistencies

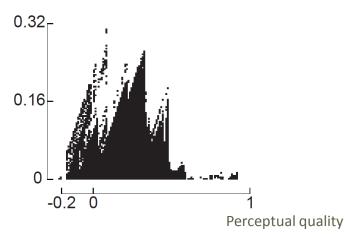


Linear Regression Principal Component Regression (PCR) **Parametric ML** Feed Forward Neural Network (FFNN) Kernel-based ML General Regression Neural Network (GRNN)

ADAPT

more than **1,000,000** inconsistencies on the stress test database

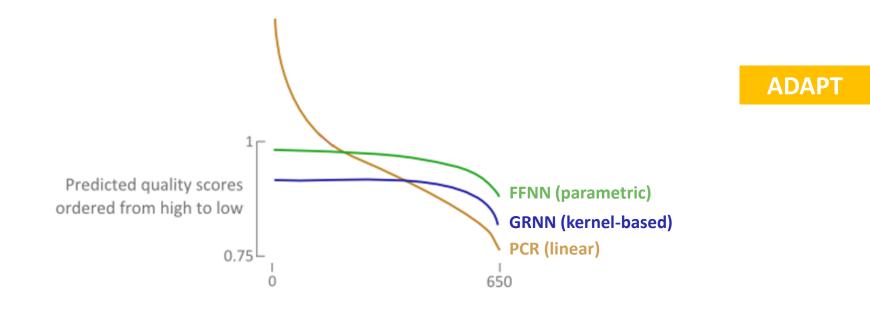
Error magnitude up to 32%



Stress test 2

Quality estimations of the reference images

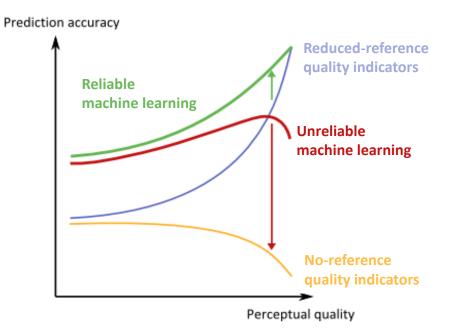
• Behavior of linear, parametric, and kernel-based ML when applied to 650 high quality reference images



Stress test 2

Quality estimations of the reference images

- Behavior of linear, parametric, and kernel-based ML when applied to 650 high quality reference images
- Explanation of the unreliable quality scores



ADAPT

The quality predictions should tend to decrease when the distortion rate is increased.

ADAPT

The quality predictions should tend to decrease when the distortion rate is increased.

Nonlinear machine learning may cause severe false orderings

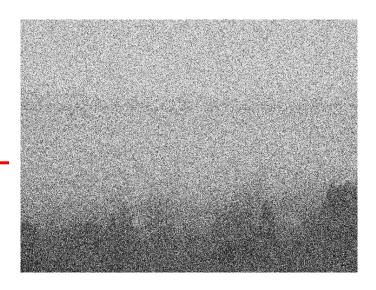
ADAPT

The quality predictions should tend to decrease when the distortion rate is increased.

Nonlinear machine learning may cause severe false orderings

ADAPT

Preferred by FFNN (parametric ML)



The quality predictions should tend to decrease when the distortion rate is increased.

Nonlinear machine learning may cause severe false orderings

ADAPT

movilne

Preferred by GRNN (kernel-based ML)

The machine learning system should be **flexible**, and also **reliable**

The machine learning system should be **flexible**, and also **reliable**

The ML weights should be interpretable

The machine learning system should be **flexible**, and also **reliable**

The ML weights should be interpretable

The training process should be reproducible Random initializations during training can be abused

The machine learning system should be **flexible**, and also **reliable**

The ML weights should be interpretable

The training process should be **reproducible** Random initializations during training can be abused

Machine learning should be consistent Ignoring the quality indicators to better fit the training data reduces the reliability

The machine learning system should be **flexible**, and also **reliable**

The ML weights should be interpretable

The training process should be **reproducible** Random initializations during training can be abused

Machine learning should be **consistent** Ignoring the quality indicators to better fit the training data reduces the reliability

The combined measure should be optimized on the entire quality range

Combining quality indicators using the Locally Adaptive Fusion (LAF)

The LAF system involves a training and an application phase

- **1. Training on an annotated quality database** The quality indicators are transformed into locally optimized fusion units
- 2. Application on a newly received signal by combining the fusion unit values using a set of adaptive weights

The LAF training phase consists of two steps

- 1. Determine a set of target values r_i of the perceptual quality
- 2. Associate a fusion unit U_i with each target value r_i

IMPROVE

LAF training
 LAF application

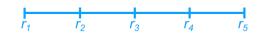
The LAF training phase consists of two steps

- **1.** Determine a set of target values r_i of the perceptual quality
- 2. Associate a fusion unit U_i with each target value r_i

The more target values, the better the covering of the perceptual quality.

Non-equidistant target values focus on subranges of the perceptual quality

Equidistant target values



Focus on lower subrange

 r_1 r_2 r_3 r_4

r₅

Focus on higher subrange

$$r_1$$
 r_2 r_3 r_4 r_5

IMPROVE

1. LAF training 2. LAF application

The LAF training phase consists of two steps

- 1. Determine a set of target values r_i of the perceptual quality
- 2. Associate a fusion unit U_i with each target value r_i

Each fusion unit is a weighted sum of the quality indicators. The used weights $w_{i,j}$ are fixed.

Each fusion unit U_i is optimized for quality predictions near the target value r_i .

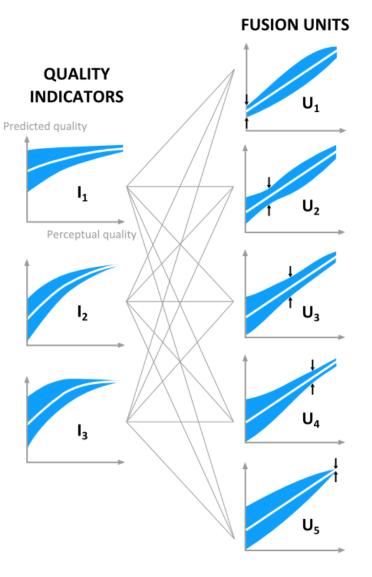
	I ₁	2	3
U1	<i>w</i> _{1,1}	<i>w</i> _{1,2}	<i>w</i> _{1,3}
U ₂	<i>w</i> _{2,1}	<i>W</i> _{2,2}	<i>w</i> _{2,3}
U ₃	<i>w</i> _{3,1}	<i>w</i> _{3,2}	<i>W</i> _{3,3}
U ₄	<i>w</i> _{4,1}	<i>w</i> _{4,2}	<i>w</i> _{4,3}
U ₅	<i>w</i> _{5,1}	<i>w</i> _{5,2}	<i>W</i> _{5,3}

LAF training
 LAF application

During training, LAF transforms the quality indicators into fusion units

ILLUSTRATION

Three quality indicators Five equidistant target values Five fusion units

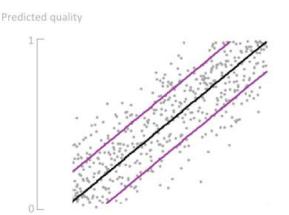


IMPROVE

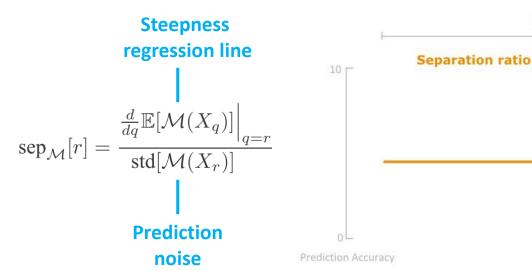
1. LAF training 2. LAF application

• Definition of the separation ratio

The separation ratio of a measure *M* shows how the local prediction accuracy of M changes in function of the perceptual quality



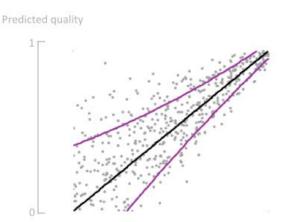
Perceptual quality

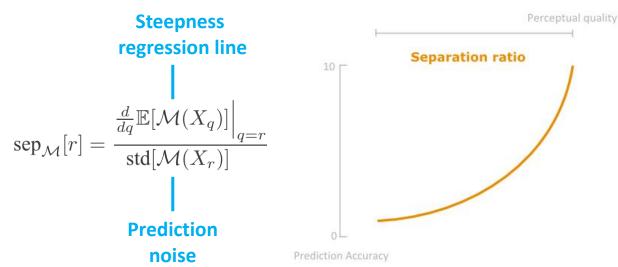


LAF training
 LAF application

• Definition of the separation ratio

The separation ratio of a measure *M* shows how the local prediction accuracy of M changes in function of the perceptual quality



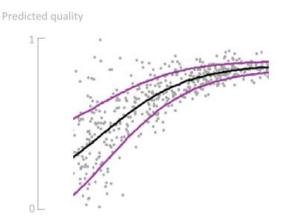


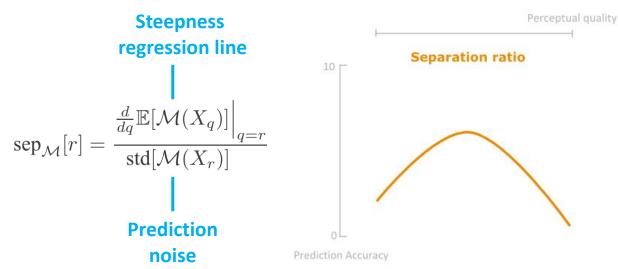
IMPROVE

LAF training
 LAF application

• Definition of the separation ratio

The separation ratio of a measure *M* shows how the local prediction accuracy of M changes in function of the perceptual quality





```
1. LAF training
2. LAF application
```

- Definition of the separation ratio
- Integration of the separation ratio

 U_r

Denote **I** for the vector of all quality indicators I_j Then a fusion unit is of the form $U_r = \boldsymbol{w}_r^T \boldsymbol{I}$

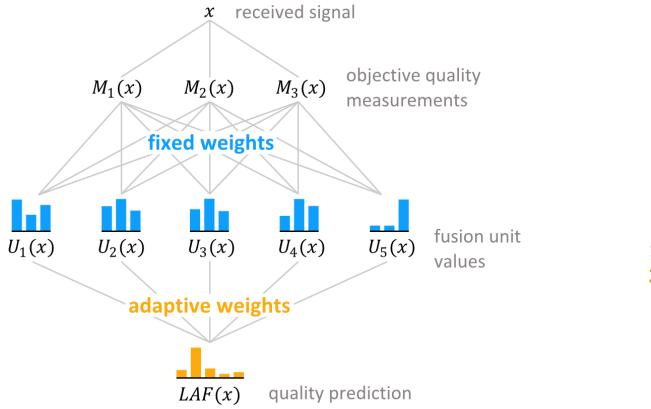
The weight vector w_r maximizes the separation ratio in r

 $w_r = \arg \max_{w \ge 0} \operatorname{sep}_{w^T I}[r]$

This is a convex quadratic programming problem which can be solved efficiently and accurately IMPROVE

LAF training
 LAF application

Once the fixed weights are trained LAF can be applied on new signals

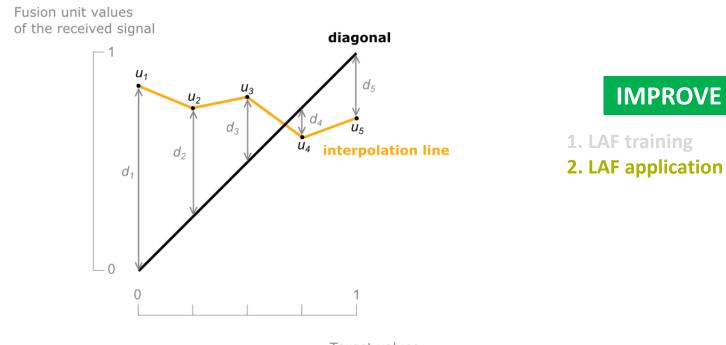


IMPROVE

LAF training
 LAF application

The highest weights are assigned to the most accurate fusion unit values

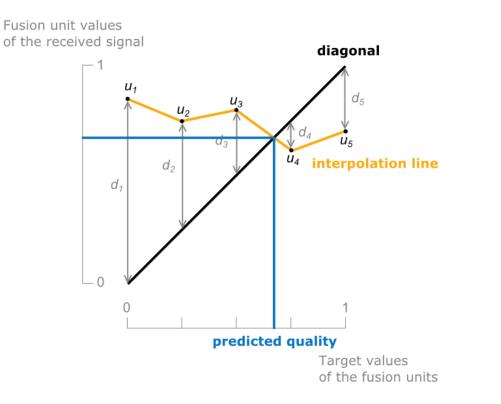
 Fusion unit values that were not calculated are interpolated



Target values of the fusion units

The highest weights are assigned to the most accurate fusion unit values

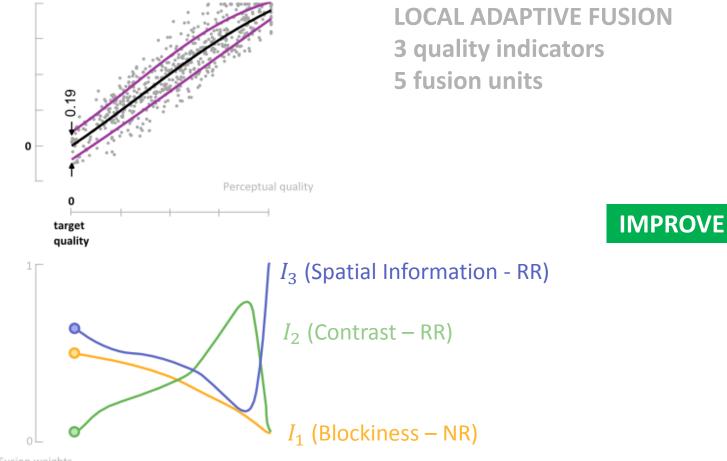
- Fusion unit values that were not calculated are interpolated
- Best quality prediction is the fixed-point, where fusion unit value = target quality score



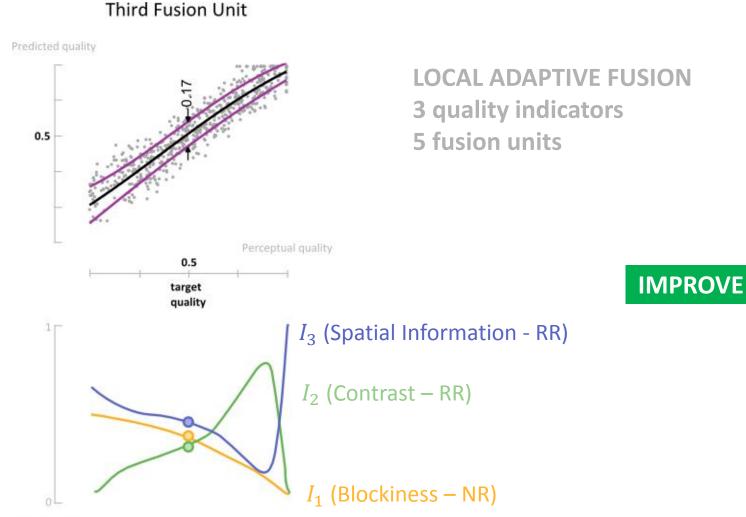
IMPROVE

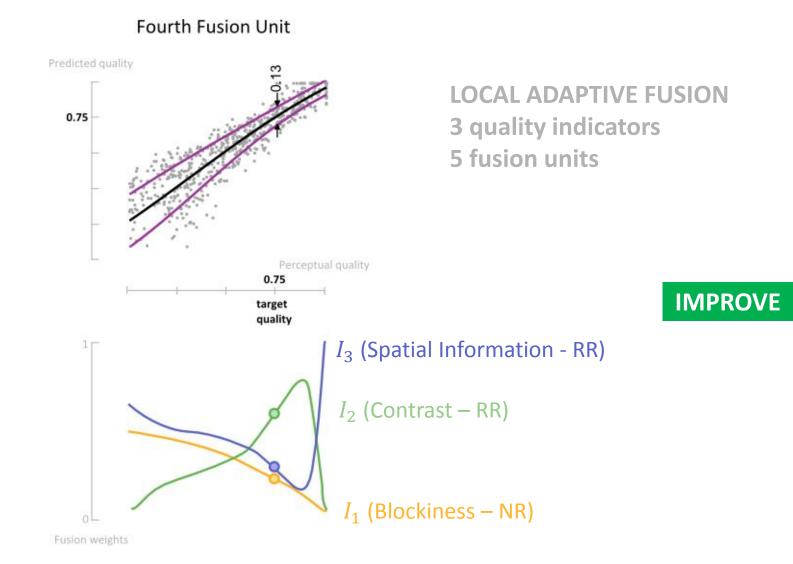
LAF training
 LAF application

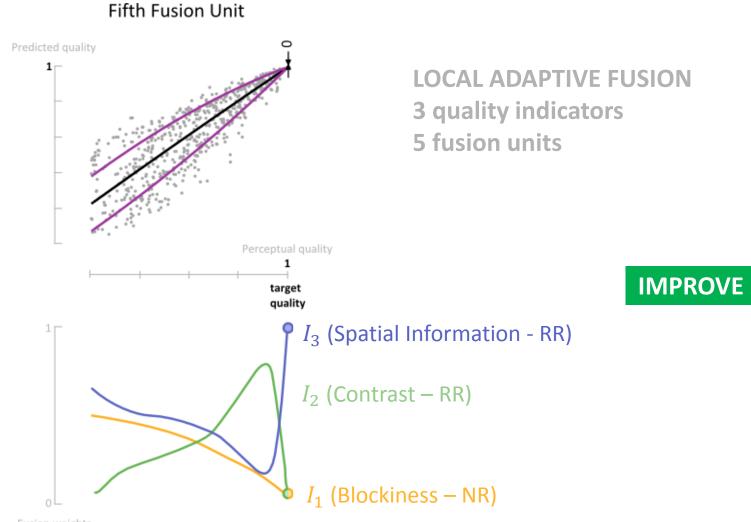
First Fusion Unit



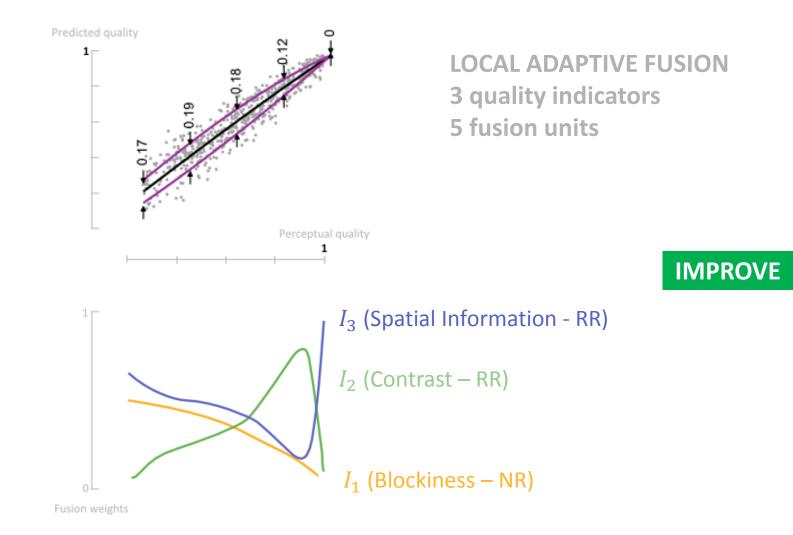
Second Fusion Unit Predicted quality LOCAL ADAPTIVE FUSION **3 quality indicators 5** fusion units 0.25 Perceptual quality 0.25 **IMPROVE** target quality 1 г I_3 (Spatial Information - RR) *I*₂ (Contrast – RR) I_1 (Blockiness – NR)







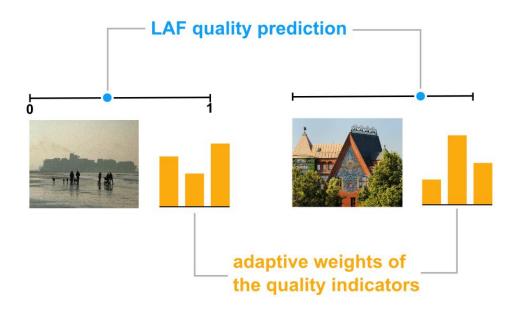
Example The LAF system is optimized on the entire quality range



- 1. Flexible and interpretable
- 2. Reproducible
- 3. Consistent
- 4. Optimized on the entire quality range

1. Flexible and interpretable

- 2. Reproducible
- 3. Consistent
- 4. Optimized on the entire quality range



- 1. Flexible and interpretable
- 2. Reproducible
- 3. Consistent
- 4. Optimized on the entire quality range

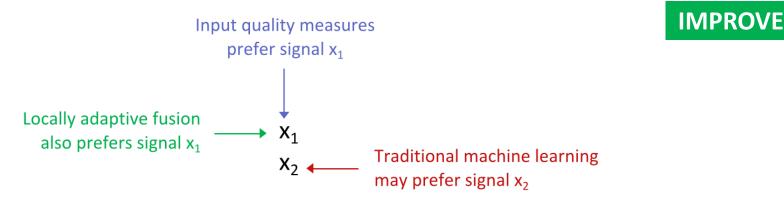
Optimization function of the training process

LOCALLY ADAPTIVE FUSION

NEURAL NETWORK

- 1. Flexible and interpretable
- 2. Reproducible
- 3. Consistent
- 4. Optimized on the entire quality range

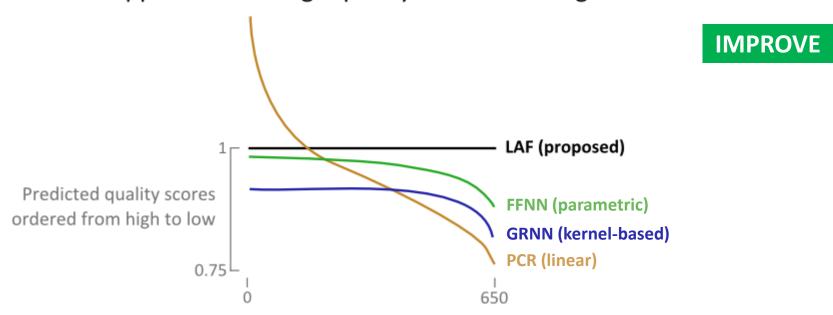
Traditional machine learning systems may violate the consistency rule



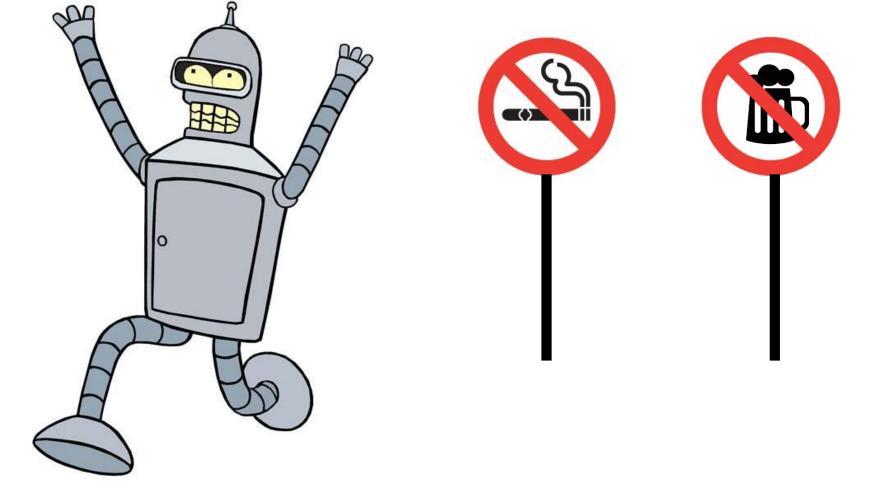
- 1. Flexible and interpretable
- 2. Reproducible
- 3. Consistent

4. Optimized on the entire quality range

The behavior of the machine learning systems applied to 650 high quality reference images



Locally Adaptive Fusions yield more reliable quality predictions by imposing strict regulations on the machine learning behavior



More information: www.locally-adaptive-fusion.com

A locally adaptive system for the fusion of objective quality measures **IEEE Transactions on Image Processing**

Adriaan Barri abarri@etro.vub.ac.be

Vrije

Questions?

Adriaan Barri abarri@etro.vub.ac.be