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ABSTRACT
Recent past has seen a lot of developments in the field of
image-based dietary assessment. Food image classification
and recognition are crucial steps for dietary assessment. In
the last couple of years, advancements in the deep learning
and convolutional neural networks proved to be a boon for
the image classification and recognition tasks, specifically for
food recognition because of the wide variety of food items.
In this paper, we report experiments on food/non-food clas-
sification and food recognition using a GoogLeNet model
based on deep convolutional neural network. The experi-
ments were conducted on two image datasets created by our
own, where the images were collected from existing image
datasets, social media, and imaging devices such as smart
phone and wearable cameras. Experimental results show a
high accuracy of 99.2% on the food/non-food classification
and 83.6% on the food category recognition.
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1. INTRODUCTION
Well-being is becoming a topic of great interest and an

essential factor linked to improvements in the quality of life.
Modern information technologies have brought a new di-
mension to this topic. It is now possible, thanks to vari-
ous wearable devices (health bands, smart watches, smart
clothes, etc.), to gather a wide range of information from
subjects such as number of steps walked, heart rate, skin
temperature, skin conductivity, transpiration, respiration,
etc. and analyze this information in terms of the amount of
calories spent, level of stress, duration and quality of sleep,
etc. An accurate estimation of daily nutritional intake pro-
vides a useful solution for keeping healthy and to prevent
diseases. However, it is not easy to assess the nutritional
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value of food and beverage consumed by subjects in an au-
tomatic and accurate way.

In the recent years, there has been a lot of developments
in the field of dietary assessment based on multimedia tech-
niques, for example, based on food image analysis. An au-
tomatic image-based dietary assessment system follows the
basic steps of: food image detection, food item recognition,
quantity or weight estimation, and finally caloric and nu-
tritional value assessment [1]. In the last couple of years,
advancements in image processing, machine learning and in
particular deep learning, and convolutional neural network
(CNN) proved to be a boon for the image classification and
recognition tasks, including for the problem of food image
recognition. Researchers have been working on different as-
pects of a food recognition system, but there is still a lack
of good-enough solution to high-accuracy food classification
and recognition, considering a wide variety of food items
and highly mixed food items in many images. Therefore, it
is extremely difficult to correctly recognize every food item,
as many of the food items may look similar in color or shape
and are not even distinguishable to human eyes, e.g., beef
vs. horse meat. Moreover, in reality, a plate with highly
mixed food makes the problem even more difficult to solve.
Therefore, we state that it would be good enough to recog-
nize the general type of a certain food item, based on which
we can approximately estimate its dietary value, e.g., calo-
ries. It can already provide people with basic information
on their daily intake.

The paper reports two sets of experiments: 1) food/non-
food image classification, and 2) food category recognition.
In order to train our model for classification and recogni-
tion, we created two datasets from the existing food image
datasets, social media and mobile devices. A GoogLeNet
model based on deep CNN was fine-tuned and trained using
our image data in a deep learning framework - Caffe.

The rest of the paper is structured as follows. Section 2
introduces the related works carried out by other researchers
after a brief discussion of the differences between food detec-
tion and food classification. Section 3 briefly introduces the
convolutional neural network (CNN) and GoogLeNet model.
Section 4 describes the food image datasets used for exper-
iments. Then Section 5 shows the experimental results on
food/non-food classification and food category recognition.
Finally, we conclude the paper and discuss the future work
in Section 6.

http://dx.doi.org/10.1145/2986035.2986039


2. RELATED WORK
Food image detection and recognition are the active re-

search topics in the area of computer vision. Researchers
have published several approaches to solve these two prob-
lems. The first problem is to detect automatically the im-
ages that contain food items. This is an indispensable step
for an automatic food analysis system. In some cases, it is
enough to classify a food image, when the main objective
is to annotate images that contain food for the purpose of
organizing them into different categories. In multimedia di-
etary assessment, one should be able to also find out what
food items are in an image, their locations, as well as their
amount.

2.1 Food Image Detection
The task of detecting whether an image contains food item

is a binary classification problem, namely, food/non-food
classification. Given an image, a food classifier identifies
an image as food or non-food. This is similar to any other
image classification problem where a classifier is trained on
image data using machine learning techniques. Classical ap-
proaches to image classification extract features such as in-
terest point descriptors from scale-invariant feature trans-
form (SIFT) [2], pool the features into a vector representa-
tion e.g., bag of words [3] and Fisher Vectors [4] and then
use a clustering algorithm such as Support Vector Machine
(SVM) for classification. Kitamura et al. [5] applied SVM
on image features consisting of color histograms, DCT co-
efficients and detected image patterns in food image detec-
tion and obtained an accuracy of 88%. [6] reports an auto-
matic detector that finds circular dining plates in chronically
recorded images or videos. As an important application, the
method can be used to detect food intake events automat-
ically by identifying dining plates in chronically recorded
video acquired by a wearable device.

Recently, the Convolutional Neural Network (CNN) [7]
offers a state-of-the-art technique for many general image
classification problems. It has been applied in food classi-
fication and resulted in a high accuracy. Kagaya et al. [8]
applied CNN in food/non-food classification and achieved
significant results with a high accuracy of 93.8%. Then, in
the work [9], the accuracy of food detection was increased
to 99.1%, using a subset of their image dataset. Compared
to previous works that use conventional machine learning
approaches, CNN seems to provide superior performance.

2.2 Food Image Recognition
Most research works in food recognition assume that only

one food item is present in the image. Thus, food recog-
nition can be solved as a multiclass classification problem.
Researchers have been working on food recognition using
conventional approaches based on classical image features
and machine learning for many years. Joutou et al. [10] cre-
ated a private Japanese food dataset with 50 classes. They
proposed a Multiple Kernel Learning (MKL) method us-
ing combined features including SIFT-based bag-of-features,
color histogram and Gabor Texture features. An accuracy
of 61.3% on their dataset was achieved. A follow-up study
by Hoashi et al. [11] achieved an accuracy rate of 62.5% us-
ing the same method on an extended dataset of 85 classes.
Chen et al. [12] created the Pittsburgh food database which
contained 101 classes of American fast food images taken in
a controlled environment. Yang et al. [13] defined eight ba-

sic food materials and learned spatial relationships between
these ingredients in a food image using pairwise features.
They achieved a classification accuracy of 28.2% on 61 food
categories which was a subset of Pittsburgh dataset [12].
Bettadapura et al. [14] used combined 6-feature descriptors
(2 color-based and 4 SIFT-based) and SMK-MKL Sequen-
tial Minimal Optimization to train an SVM classifier. They
experimented on a dataset consisting of 3750 food images
of 75 categories (50 images per category) and reported an
accuracy of 63.33% on their test dataset. Interestingly, they
incorporated the geological information of where the food
picture was taken so that they could get the information
about the restaurant and then downloaded the menu online.
An assumption of their work is that the food image must be
one of the items in the menu. Rahmana et al. [15] presented
a new method for generating scale and/or rotation invari-
ant global texture features using the output of Gabor filter
banks, which provides a good accuracy of food classification
for a mobile phone based dietary assessment system. The
top-5 accuracy they achieved was almost 100%. However,
the experiment was conducted on a special image dataset of
only 209 food images created with controlled environment.
He et al. [16] investigated different features and their combi-
nations for food image analysis and a classification approach
based on k-nearest neighbors and vocabulary trees. The ex-
perimental results indicate that a combination of three fea-
tures, Dominant Color Descriptor (DCD), Multi-scale Dense
SIFT (MDSIFT) and Scalable Color Descriptor (SCD), pro-
vides the best performance on food recognition. Bossard et
al. [17] created an image dataset called Food-101, which con-
tains 101 types of food images. They presented a method
based on Random Forests to mine discriminative visual com-
ponents and could efficiently classify with an accuracy rate
of 50.8%.

In recent years, CNN is also widely used in food recog-
nition and provides better performance than the conven-
tional methods. Bossard et al. [17] trained a deep CNN
from scratch on Food-101 dataset using the architecture of
AlexNet model (proposed by Krizhevsky et al. [18]) and
achieved 56.4% top-1 accuracy. Their proposed a new method
based on Random Forest outperforms state-of-the-art meth-
ods on food recognition. In [8], Kagaya et al. also trained
CNN for food recognition and the experimental results showed
that the CNN outperformed all the other baseline classical
approaches by achieving an average accuracy of 73.7% for 10
classes. Kawano et al. [19] used CNN as a feature extractor
and achieved state-of-the-art best accuracy of 72.3% on the
UEC-FOOD-100 [20] dataset, which contains 100 classes of
Japanese food. They used the pre-trained AlexNet model as
a feature extractor and integrated both CNN features and
Fisher Vector encoded conventional SIFT and color features.
Yanai et al. [21] fine-tuned the AlexNet model and achieved
the best results on public food datasets so far, with top-1 ac-
curacy of 78.8% for UEC-FOOD-100 dataset and 67.6% for
UEC-FOOD-256 [22] (another Japanese food image dataset
with 256 classes). Their works showed that the recognition
performance on small image datasets like UEC-FOOD-256
and UEC-FOOD-100 (both of which contained 100 images
for each class) can be boosted by fine-tuning the CNN net-
work which was pre-trained on a large dataset of similar
objects. Myers et al. [23] presented the Im2Calories system
for food recognition which extensively used CNN-based ap-
proaches. The architecture of GoogLeNet [24] was used in



their work and a pre-trained model was fine-tuned on Food-
101. The resulting model has a top-1 accuracy of 79% on
Food-101 test set.

3. CONVOLUTIONAL NEURAL NETWORK
Over the last few years, due to the advancements in the

deep learning, especially in the convolutional neural net-
works, the accuracy in identifying and recognizing images
has been increased drastically. This is not only because
larger datasets but also new algorithms and improved deep
architectures [24]. Convolutional Neural Network (CNN) is
also known as LeNet due to its inventor [25]. CNN mainly
comprises convolutional layers, pooling layers and sub-sampling
layers followed by fully-connected layers. The very first ar-
chitecture of CNN [7] takes an input image and applies con-
volution followed by sub-sampling. After two such computa-
tions, the data is fed into the fully connected neural network,
where it performs the classification task [7]. The main ad-
vantage of CNN is the ability to learn the high-level efficient
features and in addition to that, it is robust against small
rotations and shifts.

Significant progress has been made on this basic design
of CNN and it has been extended by increasing the num-
ber of layers [26], size of layers [27] and better activation
function, e.g., ReLU [28] to yield the best results on various
challenges related to object classification, recognition and
computer vision.

In this paper, we use GoogLeNet model, which was devel-
oped recently based on deep convolutional neural network,
in order to classify food/non-food images and then recognize
the food images as one of the 11 categories defined in 4.2.
GoogLeNet is an efficient deep neural network architecture,
which has a new level of organization called“Inception Mod-
ule”. It consists of convolutions and maxpooling operation
and there are nine such modules in GoogLeNet architec-
ture. Fully-connected layers are being replaced with paral-
lel convolutions that operate on the same input layer. The
1×1 convolutions at the bottom of the module reduce the
number of inputs and hence decreases the computation cost
dramatically. It also captures the correlated features of an
input image in the same region. Where as, image patterns
are responded by 3×3 and 5×5 convolutions at larger scales.
Feature maps which are being produced by all the convolu-
tions are concatenated to form the output [24]. GoogLeNet
uses 12 times fewer parameters than [28] which was the win-
ning architecture in ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) 2012 and also performs signifi-
cantly better in terms of accuracy [24].

4. DATASET
We have created two image datasets, named Food-5K

and Food-11, used for the experiments on food/non-food
classification and category recognition respectively. Both
datasets are split into three subsets, for the purpose of train-
ing, validation and evaluation respectively1. In addition,
another dataset created by [9] was used in our experiments
to evaluate the performance of our model on food/non-food
classification. Descriptions of all the datasets are given be-
low.

1The datasets are publicly accessible in http://mmspg.epfl.
ch/food-image-datasets.

Food images Non-food images

Figure 1: Example images of Food-5K dataset.

4.1 Dataset 1: Food-5K
Food-5K contains 2,500 food images and 2,500 non-food

images, resulting in a total of 5,000 images. The food images
were selected from already existing and publicly available
food image datasets, including Food-101 [17], UEC-FOOD-
100 [20] and UEC-FOOD-256 [22]. The food images were
selected in such a way that they could cover a wide variety
of food items. This could help to train a strong classifier
that can detect food images with a wide variety. In ad-
dition, images containing other objects or people in which
food is not even the main target are also considered as food
image. Every image was visually inspected by us such that
it is distinguishable by a human observer in terms of its
belongingness to one of the two classes: food and non-food.

For non-food images, we randomly selected 2,500 from
existing image datasets consisting of general non-food ob-
jects or humans. These datasets include Caltech101 [29],
Caltech256 [30], the Images of Groups of People [31] and
Emotion6 [32]. We tried to cover a wide range of contents
in the non-food images and included some non-food images
visually similar to food, thus increasing the difficulty of clas-
sification task. For the training phase, we used 3,000 images
with 1,500 for food and 1,500 for non-food. The rest of the
dataset was equally divided into two subsets, with 500 im-
ages for each class in each subset, for validation and eval-
uation respectively. Figure 1 shows some examples of food
and non-food images in Food-5K.

http://mmspg.epfl.ch/food-image-datasets
http://mmspg.epfl.ch/food-image-datasets
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Figure 2: Example images of Food-11 dataset.

Table 1: Food items and number of images in Food-11.
Category Example items Training Validation Evaluation
Bread Bread, burger, pizza, pancakes, etc. 994 362 368
Dairy products Milk, yogurt, cheese, butter, etc. 429 144 148
Dessert Cakes, ice cream, cookies, chocolates, etc. 1500 500 500
Egg Boiled and fried eggs, and omelette. 986 327 335
Fried food French fries, spring rolls, fried calamari, etc. 848 326 287
Meat Raw or cooked beef, pork, chicken, duck, etc. 1325 449 432
Noodles/Pasta Flour/rice noodle, ramen, and spaghetti pasta. 440 147 147
Rice Boiled and fried rice. 280 96 96
Seafood Fish, shellfish, and shrimp; raw or cooked. 855 347 303
Soup Various kinds of soup. 1500 500 500
Vegetable/Fruit Fresh or cooked vegetables, salad, and fruits. 709 232 231
Total 9866 3430 3347

4.2 Dataset 2: Food-11
Food-11 dataset consists of 16,643 images grouped into 11

categories, which basically cover the major types of food that
people consume in daily life. We defined the food categories
by adopting and modifying the major food groups defined
by United States Department of Agriculture (USDA) [33].
The 11 categories are: Bread, Dairy products, Dessert, Egg,
Fried food, Meat, Noodles/Pasta, Rice, Seafood, Soup and
Vegetable/Fruit. The dataset was mainly collected from ex-
isting food image datasets including Food-101 [17], UEC-
FOOD-100 [20] and UEC-FOOD-256 [22]. For certain cate-
gories (Diary products and Vegetable/Fruit), we downloaded
images from social media sites, Flickr and Instagram. For
each food category, we tried to include different food items
in order to increase the difficulty of recognition. Apart from
this, only those images whose main content is food of that
particular category were selected. The concrete example
food items in each category, and the number of images for

each subset are listed in Table 1. Figure 2 shows example
food images of the 11 categories.

4.3 Dataset 3: IFD
In [9], Kagaya built a dataset called Instagram Food/Non-

Food Dataset (IFD) from search results of #tag “food” in
Instagram and manually annotated with food and non-food
labels. The dataset consists of 4,230 food images and 5,428
non-food images. In [9], the food/non-food classification ex-
periments conducted on IFD dataset resulted in a maximum
accuracy of 95.1%. We used this dataset in our experiments
to evaluate the performance of our trained model and to
compare with the classification results in [9].

5. EXPERIMENTAL RESULTS
This section describes the experiments on food/non-food

classification and food category recognition carried out using
different datasets. In our experiments, we used Caffe [34] as
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Figure 4: Confusion matrix of food/non-food classi-
fication results on two different image datasets.

the CNN library, which is one of the most popular frame-
works for deep convolution neural network. A pre-trained
GoogLeNet model has been applied and fine-tuned using
our dataset in both food/non-food classification and cate-
gory recognition. In particular we provide details on how
the refinement of the model was achieved.

5.1 Food/Non-food Classification
Food/Non-food classification, or food image detection, is

one of the initial and important steps for image-based di-
etary assessment. To classify food and non-food images,
we used a pre-trained GoogLeNet model from [35] and fine-
tuned it using the training subset of Food-5K dataset. Fine-
tuning process takes a pre-trained model, adapts the ar-
chitecture, and resumes training from the already learned
model weights. When fine-tuning a pre-trained GoogLeNet
model, we can choose the layers whose parameters should
be updated. We have not used any pre-processing and post-
processing steps. Firstly, we made the following basic changes
in the CNN GoogLeNet model:

• All the three output layers names have been changed,
e.g.,“loss3/classifier”was changed to“loss3/classifier Food”.
The reason for changing the layers names is that there
should not be any conflict when the original weights
are being read from the pre-trained model.

Food images Non-food images

Figure 5: Examples of correctly classified food and
non-food images in Food-5K dataset.

• Number of output layers has been changed from 1000
to 2 as we have only 2 classes: food and non-food.

• The base learning rate Base_lr has been changed to
0.01 and learning rate policy is polynomial.

• The maximum number of iteration, Max_iter, has been
changed to 10000.

Then we set up two configurations to fine-tune the GoogLeNet
model, with one only updating the parameters of the last two
layers and the other for the last six layers. The overall clas-
sification accuracies of the two configurations for different
iterations are shown in Table 2, with the overall accuracy
Acc. defined as follows:

Acc. =
TP + TN

TP + FP + TN + FN
, (1)

where TP , FP , TN and FN refer to true positive, false pos-
itive, true negative and false negative respectively. In most
of the cases especially for higher number of iterations, higher
accuracy is achieved on the second setup of fine-tuning i.e.
the last six layers of GoogLeNet model. Therefore, we kept
using the setup of fine-tuning the last six layers in the re-
maining experiments.

Figure 3 shows the detailed results of food/non-food clas-
sification on the evaluation subset of Food-5K, for all the it-
erations. In the result, the sensitivity, or true positive rate,
indicates the rate of correctly detected food images. While,
the specificity, or true negative rate, refers to the rate of
correctly detected non-food images. From Figure 3, a max-
imum accuracy rate of 99.2% was achieved on evaluation



Table 2: Classification accuracy of two different fine-tuning configurations.
Iteration # 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
Fine-tuning last 2 layers 0.976 0.969 0.953 0.983 0.972 0.970 0.979 0.980 0.978 0.979
Fine-tuning last 6 layers 0.968 0.952 0.987 0.976 0.974 0.975 0.992 0.981 0.983 0.982

Food classified as Non-food Non-food classified as Food

Figure 6: Misclassified food and non-food images in
Food-5K dataset.

dataset at iteration #7000, with sensitivity and specificity
of 99.4% and 99.0% respectively.

Figure 5 shows some examples of correctly detected food
and non-food images for iteration #7000. It can be seen
that some images that have even very small regions of food
are correctly classified as food and some food-like non-food
images are correctly classified as non-food, e.g., the fake
Macaron lookalike. Figure 6 shows the incorrectly classified
food and non-food images for iteration #7000. Some non-
food images that were classified as food images are highly
similar to food images and those food images classified as
non-food images are either ambiguous or containing a very
small region of food. Figure 4(a) shows the confusion matrix
of food/non-food classification on our own dataset Food-5K.

To further evaluate the performance of our fine-tuned model
on food/non-food classification, we ran our model on the
other two datasets: Food-11 dataset created by us, and In-
stagram Food/Non-Food Dataset (IFD) by Kagaya et al. [9].
For both datasets, we tested our classifier on iteration #7000.

For Food-11 dataset, we ran our food/non-food classifier
on all the 16,643 food images and 16,127 of them were cor-
rectly detected as food images, which results in a detection
rate of 96.9%. Note that there are only food images in Food-
11 dataset, and therefore the accuracy is just the rate of cor-
rectly detected food images. Figure 7 shows some examples
of detected and undetected food images in Food-11 dataset.

For IFD dataset [9], we evaluated our model on 500 food
and 500 non-food randomly selected images. The classifi-
cation result is shown as confusion matrix in Figure 4(b).
Among all the 500 food images, 474 (94.8%) were correctly
classified as food, while 488 (97.6%) out of 500 non-food im-
ages were correctly classified as non-food. This resulted in
an overall accuracy of 96.4%, which is slightly higher than
the maximum accuracy of 95.1% obtained in [9].

5.2 Food Category Recognition
Correctly recognizing the type of a food in a food im-

age is another crucial step for a dietary assessment system.

Detected food images Undetected food images

Figure 7: Example of detected and undetected food
images in Food-11 dataset.

The aim of food categorization is to let the system either
directly estimate the nutritional value of a food item using
the general information about the food category, or further
classify the food item into sub-category to have a better es-
timation. In this experiment, we used Food-11 dataset to
train and test a CNN model on food category recognition.
As explained in Section 4.2, the food images in Food-11 have
been categorized into 11 classes and Table 1 shows the num-
ber of images in each category for training, validation and
evaluation. Our task here was to classify each food image
into one of the 11 categories. For this purpose, the pre-
trained GoogLeNet model [35] was applied and the last six
layers were fine-tuned on the training set of Food-11. We
have not used any pre-processing and post-processing steps.
Following changes have been made in the CNN GoogLeNet
model:

• All the three output layers have been renamed, e.g.,
“loss3/classifier”was changed to“loss3/classifier FoodReco”,
for the same reason as food/non-food classification in
Section 5.1.

• The number of output layers has been changed from
1000 to 11 as we have 11 classes.
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Figure 8: Misclassified food and non-food images in
Kagaya’s IFD dataset [9].
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• The base learning rate Base_lr has been changed to
0.001 and learning rate policy is polynomial .

• The maximum number of iteration, Max_iter, has been
changed to 40,000.

We used three metrics to evaluate the performance of food
recognition: 1) overall accuracy Acc., 2) F-measure F1 [36],
and 3) Cohen’s kappa coefficient κ [37]. Specially, the Co-
hen’s kappa coefficient is a numerical evaluation of inter-
rater agreement which takes into account not only the ob-
served classification accuracy but also the accuracy that any
random classifier would be expected to achieve, namely, ran-
dom accuracy. It is especially useful in evaluation of clas-
sification when the number of images in different categories
are not the same.

Figure 9 shows the overall accuracy, F-measure and Co-
hen’s kappa coefficient on the evaluation subset of Food-11
with respect to the number of iterations. The maximum
accuracy of 83.5% was achieved on evaluation dataset at
iteration #4100, where we also obtained the maximum val-
ues of F-measure and kappa coefficient, 0.911 and 0.816
respectively. The high value of Cohen’s kappa coefficient
(0.816) also indicates that the trained classifier performs sig-
nificantly better than any random classifier. Due to time
constraints, we had to stop evaluating the results on the
evaluation dataset after iteration #5000, as the accuracy on
the validation dataset did not show any significant improve-
ment.
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Values of the matrix are in percentage.

The confusion matrix of recognition results at iteration
#4100 is shown in Figure 10. Among all the classes, Noo-
dles/Pasta, Rice and Soup give the best recognition accu-
racies, higher than 95%. This is because the food images
in each category have their own common characteristics in
either shape or color and therefore are easier to be identi-
fied. However, we notice that some types of food images are
error-prone, e.g., Bread, Egg and Meat, accuracies of which
are lower than 70%. Those three types of food are also the
ones that have highly mixed food items in our dataset. For
instance, category Egg contains boiled egg, fried egg and
omelette, which are highly different in appearance. Besides,
many of those images have the main food mixed with other
food items, e.g., meat with salad. Interestingly, we observe
that Dessert and Soup are the two target classes most likely
to be misclassified. In 7 classes (Bread, Dairy, Egg, Seafood,
Meat, Fried food and Vegetable/Fruit), more than 5% of their
testing images were incorrectly classified as Dessert. This is
because Dessert is the category that has the most mixed
items in our dataset, and many of them could be visually
similar to other food. Besides, more than 4% of images in
Bread, Dessert, Meat and Seafood were misclassified as Soup.
By checking some of images misclassified as soup, we found
most of them have round-shaped elements such as plate or
round bread. Most Soup images also have the similar round-
shaped plates or containers.

According to the confusion matrix in Figure 10, we list the
top 10 misclassified class pairs and show two example images
for each in Figure 11. By observing the incorrectly classified
images, we found that misclassification mostly happen in the
following two cases:

1. Images within different classes have similar appear-
ance, shape or color.

2. Images have more than one type of food items mixed.

Considering the fact that each image category in Food-11
dataset contains different food items with certain varieties,
and that our training dataset is not significantly large, the



10.9% Bread ⇒ Dessert 9.5% Dairy ⇒ Dessert

6.9% Egg ⇒ Dessert 6.9% Seafood ⇒ Dessert

6.5% Bread ⇒ Fried 6.0% Dessert ⇒ Dairy

5.3% Meat ⇒ Dessert 5.2% Fried ⇒ Dessert

5.2% Fruit ⇒ Dessert 4.9% Meat ⇒ Soup

Figure 11: Top 10 misclassified category pairs and
example images. The percentage number indicates
the proportion of incorrectly classified images in all
testing images for the particular category.

results we obtained (Acc. = 0.835, F1 = 0.911 and κ =
0.816) seem promising.

6. CONCLUSION
In this paper, we applied a pre-trained GoogLeNet model

based on CNN architecture on the tasks of food/non-food
image classification and food category recognition. We con-
structed two image datasets from publicly available datasets
and social media, and fine-tuned the GoogLeNet model us-
ing our datasets. The experimental results show the over-
all accuracy of 99.2% on food/non-food image classification
and 83.6% on food categorization. The main reason for not
achieving a high recognition accuracy on certain types of
food images is complex mixture of food items in image and
highly visual similarities between some images across cat-
egories. As a future direction, we aim at recognizing food
items in images with a multi-label approach, namely, us-
ing top-n as prediction output, and integrating contextual
information to improve the accuracy and compare it with
different architectures such as AlexNet, VGG, and ResNet.
Further investigation will be done based on the different
transfer learning schemes such as locking layers, etc. We

will also work on the estimation of food items quantity and
weight in order to finally estimate their nutritional value.
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