NOKIA Bell Labs

Project Vertigo

Monitoring sickness and discomfort in high-motion 360 video

- Pablo Pérez
- 08-05-2017

Project Vertigo

Monitoring sickness and discomfort in high-movement 360 video

- Targeting high-motion 360VR video
 - Live streaming
 - Video communications
 - First-person POV experience
- Need to measure sickness
 - Cybersickness effects [1]
 - Partially detectable via biological signals [2]
 - More aggressive than 3D discomfort

- Project goals
 - 1. Set up subjective assessment lab
 - 2. Reduce high-sickness video
 - 3. React to user feedback
- We are starting
 - Comments are more than welcome!

NOKIA Bell Labs

– Engagement with VQEG-IMG.

[1] Barrett, J. (2004). *Side effects of virtual environments: A review of the literature* (No. DSTO-TR-1419). DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION CANBERRA (AUSTRALIA).

[2] C. Nakagawa, "Toward the detection of the onset of virtual reality sickness by autonomic indices," *2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)*, Osaka, 2015, pp. 662-663.

Test definition

Target: validate some intuitions and kick-off test methodology

- High-movement vs low-movement 360 videos
 - PVS -> add some fixed visual cues (windows, bars, fixed elements).
- *Vertigo* scale:
 - Based on visual discomfort scale (ITU-R BT.2021)
 - Incorporating explicit tolerability information

VERTIGO SCALE		
5	No problem	No perceptible effect, natural feeling
4	Light effects	Slight discomfort, but no sickness
3	Uncomfortable	Moderate discomfort, but tolerable for a while
2	Unpleasant	Strong discomfort or sickness, but able to complete the playout
1	Unbearable	Severe discomfort or sickness, and want to terminate the playout immediately

NOKIA Bell Labs

Test description

Target: validate some intuitions and kick-off test methodology

- 22 test subjects
 - 17 male / 5 female, age 28-55
 - Technical background
- 2 video sequences (30s each)
 - High movement: cellar visit
 - Low movement: metro lightweight rail stop
- 4 PVS
 - Original sequence
 - Fixed-position logos
 - Fixed-position circular windows
 - Fixed-position horizontal & vertical bars

Video sequences (1/6) Original sequences: Wine Cellar (high motion, hand-held camera)

Video sequences (2/6) Original sequences: Metro Lightweight Rail (low motion, fixed camera)

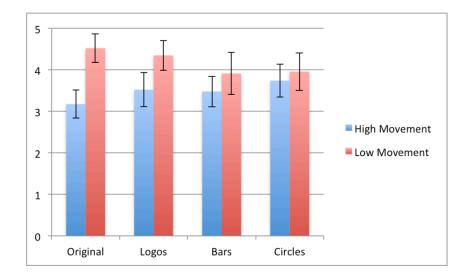
Video sequences (3/6) Adding logos in fixed positions

Video sequences (4/6) Overlay of jail-like bars

Video sequences (5/6) Overlay of circular windows

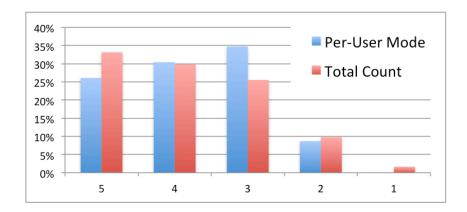
Video sequences (6/6) Links to Vimeo

- Wine cellar
 - <u>https://vimeo.com/214983643</u>
 - <u>https://vimeo.com/214983686</u>
 - <u>https://vimeo.com/214983723</u>
 - <u>https://vimeo.com/214983761</u>


- Metro Light Railway
 - <u>https://vimeo.com/214983803</u>
 - <u>https://vimeo.com/214983843</u>
 - <u>https://vimeo.com/214983898</u>
 - <u>https://vimeo.com/214983934</u>

Test results

Preliminary conclusions (1/2)


- Unprocessed high-movement video is significantly aggressive.
- Sickness can be mitigated by introducing fixed visual references...
- ...but those references have strong impact on experience by themselves
 - Some subjects reported "claustrophobic" sensations and general discomfort.

Test results

Preliminary conclusions (2/2)

- Variability between users
 - Global comfort across sequences
 - ~10% of users do not tolerate VR video at all (vote 1-2 for most sequences)
 - ~25% of users are unaffected by high-motion (vote 5 for most sequences).
 - Individual feedback about what they consider uncomfortable
 - Gaze pattern and strategies
- Post-experience SSQ
 - Light to moderate effects (dizziness, headache)

But we are just starting!

Next steps

- 1. Improve subjective assessment methodology
 - Collaboration with IMG initiatives
- 2. Improve video experience for high-movement video
 - Software-based stabilization
 - Less intrusive visual helpers (when required)
- 3. Monitor and predict user discomfort, based on
 - Global video motion (+ disparity)
 - User reactions (head motion analysis)
 - Bio-feedback

