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e Typical measures [ITU-T Rec. P.1401]

O  Pearson Correlation Coefficient
O Root Mean Squared Error :> Necessity of mapping to the common scale
O  Outlier Ratio
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Danger of Mapping

e Mapping is not standardized (only required to be monotonic)
e Problems:

O  Different papers provide different results obtained for the same datasets
B Reproducibility is questionable

O  Mapping can bias the results

Correlation for CSIQ database after 3rd order polynomial mapping SSIM MS-SSIM

Fitting function coefficients optimized with PLCC (VQEG) 0.8575 0.8562

Fitting function coefficients optimized with RMSE (ITU-T Rec. J.149) 0.8581 0.8859
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Rank Order Correlation

e Using Rank Order Correlation Coefficients (Spearman’s and/or Kendall's)

o Typical solution to the mapping problem - independency towards the monotonic mapping

e However...

o Considering subjective data to be deterministic
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e Goals:
o No mapping during the process
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e Basic premise:
o Regardless the subjective procedure, we are always able to determine:

(a) Are any two stimuli statistically significantly different in quality?

lijlEN © Pr{S(i)# S()}<1-a
[ijeD & Pr{S()#S()} = 1-a

(b) If they are, which of them is qualitatively better?

[ij]eB & AS(ij) = S() - S() 2 0, V [i]€D
[ijEW © AS(ij) = S(i) - S() < 0, V [i €D



Novel performance evaluation methodology:
Proposed Assumptions

e Reliable metric then

|.  Provides close scores for similar pairs and distant scores for different

IAOM(i j)| = |OM(i) - OM(j)| — 0, V [ijlEN
IAOM(i j)| = |OM(i) - OM(j)| > 0, V [ijleD



Novel performance evaluation methodology:
Proposed Assumptions

e Reliable metric then

|.  Provides close scores for similar pairs and distant scores for different

IAOM(i j)| = |OM(i) - OM(j)| — 0, V [ijlEN
IAOM(i j)| = |OM(i) - OM(j)| > 0, V [ijleD

Il.  Provides higher score for qualitatively better stimulus

sign { AOM(i,j) } = sign { AS(i))) }, V [ijleD
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Novel performance evaluation methodology:
Description
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- Threshold for the criterion's scores difference
providing 95% probability that the images
are significantly different (i.e. 0.95 percentile
of the distribution for similar pairs)
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Outcomes:
- Percentage of correct recognition of the
qualitatively better stimulus from the pair
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Novel performance evaluation methodology:
Advantages

Goals have been fulfilled
o There is no mapping involved

o The uncertainty of the subjective scores is considered

Moreover...
o Universality towards the subjective procedure, scale, and format of the ground-truth data
o Allows for simple numerical comparisons and testing of statistical significance
o High statistical power (due to the pair-wise approach)
o Enables simple and meaningful combination of the data coming from multiple datasets

m  No inter-experiment mapping necessary
m Overall performance can be easily determined
m Increase of number of training/testing points in orders of magnitude - deep learning etc.



Using the framework for objective metrics training

Setting of weights \
Input :r; Features :r; Performance :r; Output :r; Resulting
[Combination } [ Evaluation } [ Evaluation }

i

Input
Datasets




Using the framework for objective metrics training

Setting of weights \
by numerical optimization

Our framework

Input Features ::: Performance ::: Output ::: Resulting
Features Combination Evaluation Evaluation weights

Input

Datasets
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Preliminary results

e Publicly available VMAF (Video Multi-Method Assessment Fusion) package

o VMAF features (VIF on 4 scales, Detail Loss, Motion)
e 18 datasets (9 used for training, 9 for testing)

e 1 hidden layer, 6 neurons, RELU activation function

Custom Neural Network: VMAF (trained on one of the datasets):

Test set

Test set

AUC_DS = 0.7869
AUC_BW = 0.9550
CC_0 = 0.8963

Test + Train sets

AUC_DS = 0.7586
AUC_BW = 0.9490
CC_0 = 0.8951

AUC_DS = 0.7646
AUC_BW = 0.9551
CC_0=0.8957

AUC_DS =0.7230
AUC_BW =0.9469
CC_0=0.8954

Test + Train sets---------------



Thank you for your attention!
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TN - true negative True positive rate
TP - frue positive TPR=TP/(TP+FN)

P() FN - false negative

FP - false positive False positive rate

FPR =FP/ (FP+TN)
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