A VMAF Model for 4K

Zhi Li *Netflix*

Toinon Vigier, Patrick Le Callet University of Nantes

VQEG Madrid 2018

Acknowledgements

• Special thanks to Lukas Krasula and Yoann Baveye of University of Nantes, for helping design and conduct the subjective experiment.

VMAF framework

Why do we need a 4K model?

• VMAF v0.6.1 seems to work fine in terms of subjective data correlation

	Pearson correlation					
	PSNR (Lin)	VMAF (Lin)	SSIM (poly)	MS-SSIM (poly)	VIF (exp)	VQM (poly)
Class A	0.7212	0.9389	0.8873	0.8319	0.8887	0.9019
Class B	0.663	0.9216	0.5755	0.601	0.6779	0.8163

Class A: 3H for HD videos Class B: 1.5H for UHD videos

Spearman Correlation

Desman Convolation

_		PSNR (Lin)	VMAF (Lin)	SSIM (poly)	MS-SSIM (poly)	VIF (exp)	VQM (poly)
	Class A	0.7756	0.9539	0.8997	0.8376	0.8764	0.8997
	Class B	0.7276	0.958	0.5578	0.6185	0.667	0.8125

	MSE					
	PSNR (Lin)	VMAF (Lin)	SSIM (poly)	MS-SSIM (poly)	VIF (exp)	VQM (poly)
Class A	0.6652	0.3304	0.4429	0.5328	0.4403	0.4147
Class B	0.7188	0.3728	0.7852	0.7674	0.7245	0.5546

* VMAF framework performance on UHD videos, by Jesus Gutierrez et al, VQEG Meeting 08/05/2017

Why do we need a 4K model? (Cont'd)

- VMAF v0.6.1 is trained on 1080p, for 1080p
 - Video source: mix of 4K and 1080p
 - PVS: mix of encoding resolutions 1080p, 720p, 480p etc.
 - Trained on subjective data collected on 1080p device at distance 3H
 - Mapped to score range of [0, 100]
- When applied to 4K videos:
 - Predicts quality at 60 pixels/degree 1.5H for 4K display
 - What it does NOT capture:
 - Viewing angle (1.5H for 4K has wider viewing angle)
 - Not calibrated to viewer expectation of 4K experience

Subjective experiment setup

- Content selection
 - 8 new clips based on false positive / false negative analysis of v0.6.1
 - \circ 18 old clips reused from training VMAF v0.6.1
 - In total, 26 clips, 13 are 4K source, 13 are 1080p source
- Impairment generation
 - X264 main profile, 2-sec GoP, 3 CRF values: 21, 25, 29
 - Resolutions 3840x2160, 1920x1080, 1280x720, 960x540, 640x360, 480x270, 384x216, PAR 1:1
 - Encoded video to be upscaled to 4K using bicubic before display
 - With hidden reference, total #PVS 13 * 22 + 13 * 19 = 533

Subjective experiment setup (Cont'd)

- Experiment size
 - Methodology: ACR with hidden reference
 - 533 PVS and 24 scores / PVS
 - Fit into 7 sessions, each approximately 20 minutes
- Lab setup
 - 43" 4K TV (Sony FW-43XD8001)
 - Standardized room environment
 - Controlled lighting (ITU-R BT.500-13)
 - Viewing distance 1.5H
 - Two parallel sessions (with two TVs) to speed up data collection

False positive / false negative analysis of VMAF v0.6.1

Paired Comparison on 79 videos: UHD vs. upscaled FHD

FP: subjects do not see a significant difference in quality but VMAF yields a low score (thus falsely detects some artifacts)

FN: subjects see a significant difference in quality but VMAF yields a high score (thus falsely ignores some artifacts)

False positives

Sample images removed due to intellectual property issue

False negatives

Sample images removed due to intellectual property issue

Raw opinion scores

*white: missing data (since selective sampling was used)

MOS scores recovered by maximum likelihood estimation

Cross-dataset validation (SROCC)

LIVE Video	0.686			
LIVE Mobile	0.832			
CSIQ-VQA	0.788			
NFLX	0.828			
MPEG SHVC	0.762			
VQEG HD3	0.830			
EPFL	0.776			
VMAF v0.6.1	0.838			
VMAF 4K	0.841			
*Training on one dataset and test on the rest, then report the average SROCC				

Training

Coming up next to VMAF open-source repo

- Release of new 4K model (this talk)
- Confidence interval of VMAF model (Wednesday's talk)
- Enhanced temporal features
- New HDR model

Backup Slides

NETFLIX