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Ways to measure video quality 
 

Subjective Assessment Automated Assessment  
using PSNR, SSIM, or VMAF 



PSNR 37.3 dB 



PSNR 32.9 dB 



Need a better perceptual metric 
 
●  Accurately measures human perception of quality 
●  Consistent across content 
●  Can be run at scale 
●  Works well relevant to adaptive streaming 

○  Compression artifacts 
○  Scaling artifacts 

 
 VMAF: Video Multimethod Assessment Fusion 



PSNR 37.1 dB, VMAF 71.1 



PSNR 32.9 dB, VMAF 70.2 



PSNR 29.1 dB, VMAF 20.4 



PSNR 29.3 dB, VMAF 69.8 



Video Multimethod Assessment 
Fusion 
 ●  Full-reference video quality metric  
 
●  Combines multiple elementary quality metrics 

○  Visual quality fidelity (VIF*) @ 4 scales 
○  Detail loss measure (DLM**) 
○  Temporal information (TI) - average pixel difference between adj. 

frames 
 
●  Machine-learning regression to predict a final “fused” score, guided 

by subjective data 
*Visual Information Fidelity - H. Sheikh and A. Bovik, “Image Information and Visual 
Quality”. 
 
**Detail Loss Measure - S. Li, F. Zhang, L. Ma, and K. Ngan, “Image Quality Assessment by 
Separately Evaluating Detail Losses and Additive Impairments”. 
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Dynamic Optimizer framework: Single shot 
processing 
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Dynamic Optimizer framework: Convex hull of 
optimal shot encodes 
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Results: DO VP9 vs. Per-Title Optimal QP 



Video encoders used 
●  X264: open-source practical AVC encoder 
●  x265: open-source practical HEVC encoder 
●  EVE-VP9: practical VP9 encoder 
●  All in dual-tuning configuration 

5. RESULTS

Before going to the actual figures, we believe it’s important to explain the parameters chosen for encoders and
testing material

5.1 General encoder settings - source material preprocessing

We restricted our analysis to YUV420, 8-bit content. We chose High Profile for AVC, Main Profile for HEVC
and Profile 0 for VP9. We used only source material of High Definition (1920⇥ 1080) or higher resolution, with
frame rates between 24 and 30fps - also known as standard frame rate (SFR). Content available in higher formats
was down-converted to HD, SFR, YUV420/8-bit prior to processing.

For the temporal subsampling of high frame-rate (HFR) sources, the odd-numbered frames (counting from 0)
were kept. For spatial down-scaling of higher than HD sources, we used the Lanczos filter with parameter ↵ = 5,
a linear filter with very high quality. To convert 10-bit sources to 8-bit digital signals, the 2 least-significant bits
of each sample were discarded, with rounding. The same high-quality Lanczos ↵ = 5 filter was used to upsample
decoded sequences to the same input source resolution, prior to calculating PSNR and VMAF quality metrics.

Where present in the source material, black lines or columns were removed at the preprocessing step and
didn’t contribute to the coding cost, nor to the quality of reconstructed frames.

Another important preprocessing step was the partition of long sequences in shots. To do that, a shot-change
detection algorithm, described in,30 based on multi-scale frame pixel di↵erences was used. Although not perfect
(especially for cross-fades and other non-cut shots), the shot partition was kept uniform for all codecs under
testing, so as to equalize the number of Intra/Key frames. It should be understood that, in the presence of a
more sophisticated shot-detection algorithm, the e�ciency of the whole system is increased, for all codecs tested.

5.2 Specific encoder settings

In general, we tried to use those parameters that result in the most exhaustive search space for each encoder. As
such, we disabled multi-threading or the use of tiles, for those encoders that allow it. Moreover, we used a fairly
large search window for motion estimation, setting it to be equal to 1/8 of the frame width, which corresponds
to 240 pixels at HD resolutions.

Detailed settings of di↵erent encoders can be found in Table 1. As mentioned before, for each encoder, we
produce two sets of results, with di↵erent emphasis of tuning (perceptual vs PSNR). The corresponding encoder
options (alternative to each other) are listed in the last two rows of the table.

Table 1: Encoder settings of x264, x265 and EVE-VP9
settings x264 x265 EVE-VP9
profile high main profile 0
preset placebo placebo speed 1

number of titles n/a 1 1
multi-threading o↵ o↵ o↵

pass 1 1 1
PSNR-tuning psy-rd=0 psy-rd=0 psy-rdoq=0 tune=psnr

perceptual-tuning psy-rd=1.00 psy-rd=1.00 psy-rdoq=1.00 tune=visual

5.3 Test video material

We decided to test this methodology on 8 full-titles from the Netflix catalog; 7 contain natural video with a wide
variety of visual content, typical of film and TV-drama and 1 animation (synthetic video) content. All 8 titles
were available in high quality sources.

We understand that the use of proprietary material is an impediment to those researchers who wish to
reproduce our results. Yet, we believe that if researchers attempt to use the proposed framework and methodology
on the content that Netflix has produced and made public, such as “El Fuente”9 and “Chimera”,10 their results
should be similar to the ones we obtained on the 8 full Netflix titles.



Quality metrics used 
●  TPSNR:  

●  CPSNR: 

●  LVMAF: 

●  HVMAF: 
 

4. TESTING METHODOLOGY

The dynamic optimizer allows for any subset of encoding and QPs, not necessarily the same, to be used for
di↵erent shots in a video sequence. In order to reduce the number of encodes performed for each shot, a greedy
binary-search-like iterative algorithm was developed and validated at Netflix, prior to this work. This algorithm
has been shown with a number of video sequences, video codecs, coding parameters and quality metrics to
produce virtually identical results compared to encoding of all resolutions and QP parameters. We call this
version “iterative dynamic optimizer” (IDO).

A key di↵erence between the iterative variant of dynamic optimizer (DO) and the full version of DO is that
the former requires specification of the desired bitrates and/or qualities where this greedy algorithm refines at
each iteration. The full version, on the other hand, provides the “total solution” to the video encoding range,
i.e. a complete, dense, R-Q convex hull for the entire sequence.

In terms of quality metrics - and their corresponding distortion measures - we used 4; 2 based on PSNR
and the other 2 based on VMAF. We call the PSNR-based metrics “True PSNR” and “Classic PSNR”, and are
defined as follows.

Peak-signal-to-noise-ratio (PSNR) of two images X and Y , both sized K ⇥L in pixels, is a traditional image
metric that expresses mean-squared-error (MSE) of each image component (Y/Cb/Cr) in a logarithmic scale
(dB), as follows.

PSNR = 10 log10(
2552
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Let N be the number of frames in a video sequence and PSNRYi, PSNRCbi and PSNRCri be the PSNR
values for each one of the 3 color components of frame i. Classic PSNR - this is the arithmetic average of PSNR
values for the Y-component of each frame:
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True PSNR is the arithmetic average of MSE values for the Y/Cb/Cr component of each frame, properly
weighted by the number of pixels in each component, expressed in dB; for the case of 8-bit YUV4:2:0 video is
the following:
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One can easily show that Classic PSNR can also be calculated by taking the geometric mean of MSE values
for the Y component first, and then expressing that mean in dB. As a result, and focusing on the Y-component
for a moment, one can prove (inequalities among harmonic, geometric and arithmetic means of sequences) that
the Classic-PSNR value is always higher from the corresponding True-PSNR value. In practice, since Cb- and
Cr-PSNR values are typically higher than Y-PSNR for a given frame, there is no mathematically guarantee
on such inequality. Moreover, we can show that large di↵erences in MSE values among di↵erent frames in a
sequence result in a higher discrepancy between True PSNR and Classic PSNR values. Given that there is a
number of publications that prefers one over the other, we decided to calculate and use both these metrics for
encoded shots. We hope that, through subjective validation, the video compression community can settle on a
single PSNR metric that can be used consistently for reporting research results.

When it comes to VMAF, one should always remember that it is the result of fusing various image-based
quality metrics, together with a simple temporal feature. Thus, VMAF is calculated and reported on a per-frame
basis, similar to the way PSNR works. Therefore, temporal aggregation of these individual frame VMAF values
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is an open research question. We have experimented with a number of temporal aggregation methods, and we
found that two approaches that produce consistently visually pleasing results, and also correlate nicely with
subjective experiments, are arithmetic-mean averaging, called Linear VMAF, and harmonic-mean averaging,
called Harmonic VMAF, as defined below:
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In the following, and for brevity, we will use the terms CPSNR, TPSNR, LVMAF and HVMAF to indicate the
4 di↵erent video quality metrics discussed previously - Classic PSNR, True PSNR, Linear VMAF and Harmonic
VMAF, correspondingly.

Given the use of iterative DO as the main block to successively optimize the quality of encodes for each
codec, there was a need to choose the appropriate quality/bitrate points for the iterative DO to operate on.
Since the variability of content, we focused on setting specific quality targets, instead of fixed bitrate targets. In
fact, as shown through a previous “Per-title encoding optimization” Netflix tech-blog,28 choosing the appropriate
bitrates that better fit a given source video sequence can significantly improve the performance of a given video
codec. Moreover, given the superiority of VMAF in correlating with human subjective scores, as well as its
consistency, we opted to set a fixed set of HVMAF targets as the basic input to the iterative DO algorithm. In
order to cover the entire range of qualities, motivated from recent studies around the just-noticeable-di↵erence
(JND) model in video quality,29 which show that the average JND step corresponds to a VMAF di↵erence of 6
units, we chose the following set of 12 VMAF quality targets:

[30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]

One can notice the spacing of 6 VMAF units among these targets and the range from 30 (“poor”) to 96 - which
should be close to perceptually lossless quality.

Encoding resolution were chosen to densely cover the entire range from very low (256⇥144) up to the source,
i.e. HD, resolution. These are the 10 encoding resolutions chosen for this study:

[1920⇥ 1080, 1536⇥ 864, 1216⇥ 684, 960⇥ 540, 768⇥ 432, 608⇥ 342, 480⇥ 270, 384⇥ 216, 320⇥ 180, 256⇥ 144]

One can notice a ratio of close to 1.5 for the number of pixels between consecutive steps in the encoding resolution
ladder.

In summary, the following strategy has been followed, for each sequence and each codec independently:

• Shot encodes were produced at various resolutions and QPs

• Dynamic optimization was run, with HVMAF as the objective function and 12 HVMAF target values, as
described earlier.

• The resulting bitrates bi, i 2 1, . . . , 12, one for each step in the quality ladder were calculated

• Dynamic optimization was run 3 more times; each time using one of the other 3 quality metrics (LVMAF,
TPSNR and CPSNR) as objective function, after setting the previously obtained bitrates bi as targets

In e↵ect, the proposed methodology achieves 12 sets of encodes for a given title, each set representing
increasing qualities/bitrates of that title, i.e. 12 steps in a typical adaptive streaming quality ladder. Each
set contains 4 encodes with the same average bitrate, the di↵erence among them being that they represent the
optimal encode one could get by using CPSNR, TPSNR, LVMAF and HVMAF as the objective function within
the dynamic optimizer framework.

The previous steps were run iteratively, performing additional encodes for each shot, thus achieving increasing
quality encodes at each iteration. Convergence and thus termination of iterative DO is signaled when there is no
improvement between consecutive iterations. That is the final convergence point for the iterative DO algorithm,
from which the resulting (R,Q) pairs were then taken and reported in the following tables and figures.
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Proposed codec testing methodology 
●  Use multiple encoding resolutions and QP values for each 

video sequence 
●  Use scaled metrics (PSNR, VMAF, ??) to construct R-D 

convex hull for each shot in a sequence 
●  Use dynamic optimizer to determine optimal encoding 

parameters for long sequences 
●  Use points equally spaced on the quality axis to calculate 

BD-rate 
●  Break down quality in ranges, when cross-over of R-D 

curves among different encoder configurations is observed 





Results - 1 



Results - 2 



Results - 3 



Results - 4 



Results - 5 



Results - 6 



Results - 7 



A few facts 

●  x265 is about 20x slower than x264; EVE-VP9 is 
about 5x slower 

●  Test sequences represent about 8 hours of visual 
content 

●  Running these experiments took about 3 weeks to 
conclude 

●  10M encodes produces 
●  1M CPU hours – using cloud compute resources 



Summary 
●  Scaled objective metrics better reflect adaptive streaming application 

video quality – VMAF more so than PSNR 
●  Using convex hull provides relevant QP ranges for each encoding 

resolution 
●  Dynamic optimizer offers an upper bound on RD-performance for long 

sequences 
●  DO allows for more fair comparison between codecs 
●  EVE-VP9 outperforms x265 for natural video sequences 
●  x265 outperforms EVE-VP9 for animation titles, mostly in low quality 

range 
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