Video codec comparison using the dynamic optimizer framework

Ioannis Katsavounidis & Liwei Guo Video Algorithms Netflix

World's Leading Internet Entertainment Service

Outline

- Measuring video quality VMAF
- Dynamic Optimizer framework
- Proposed testing methodology
- Results

Ways to measure video quality

Subjective Assessment

Automated Assessment using PSNR, SSIM, or VMAF

Need a better perceptual metric

- Accurately measures human perception of quality
- Consistent across content
- Can be run at scale
- Works well relevant to adaptive streaming
 - Compression artifacts
 - Scaling artifacts

VMAF: Video Multimethod Assessment Fusion

Video Multimethod Assessment Fusion

- Full-reference video quality metric
- Combines multiple elementary quality metrics
 - Visual quality fidelity (VIF*) @ 4 scales
 - Detail loss measure (DLM**)
 - Temporal information (TI) average pixel difference between adj. frames
- Machine-learning regression to predict a final "fused" score, guided by subjective data

***Visual Information Fidelity -** H. Sheikh and A. Bovik, "Image Information and Visual Quality".

****Detail Loss Measure -** S. Li, F. Zhang, L. Ma, and K. Ngan, "Image Quality Assessment by Separately Evaluating Detail Losses and Additive Impairments".

How VMAF works

Dynamic Optimizer framework: Single shot processing

Dynamic Optimizer framework: Convex hull of optimal shot encodes

Dynamic Optimizer framework: Trellis optimal path

Fixed QP encode

Highest (average) quality encode, with bitrate x kbps

Lowest (average) bitrate encode, with quality y

Results: DO VP9 vs. Per-Title Optimal QP

Video encoders used

- X264: open-source practical AVC encoder
- x265: open-source practical HEVC encoder
- EVE-VP9: practical VP9 encoder
- All in dual-tuning configuration

settings	x264	x265	EVE-VP9
profile	high	main	profile 0
preset	placebo	placebo	speed 1
number of titles	n/a	1	1
multi-threading	off	off	off
pass	1	1	1
PSNR-tuning	psy-rd=0	psy-rd=0 psy-rdoq=0	tune=psnr
perceptual-tuning	psy-rd=1.00	psy-rd=1.00 psy-rdoq=1.00	tune=visual

Quality metrics used

• TPSNR:

$$PSNR_{true} = 10\log_{10}\left(\frac{1}{N}\sum_{n=0}^{N-1}10^{-PSNRY_n} + 0.25\frac{1}{N}\sum_{n=0}^{N-1}10^{-PSNRCb_n} + 0.25\frac{1}{N}\sum_{n=0}^{N-1}10^{-PSNRCr_n}\right)$$

• **CPSNR:** $PSNR_{classic} = \frac{1}{N} \sum_{n=0}^{N-1} PSNRY_n$

• LVMAF:
$$VMAF_{linear} = \frac{1}{N} \sum_{n=0}^{N-1} VMAF_n$$

• HVMAF:
$$VMAF_{harmonic} = \frac{N}{\sum_{n=0}^{N-1} \frac{1}{1+VMAF_n}} - 1$$

Proposed codec testing methodology

- Use multiple encoding resolutions and QP values for each video sequence
- Use scaled metrics (PSNR, VMAF, ??) to construct R-D convex hull for each shot in a sequence
- Use dynamic optimizer to determine optimal encoding parameters for long sequences
- Use points equally spaced on the quality axis to calculate BD-rate
- Break down quality in ranges, when cross-over of R-D curves among different encoder configurations is observed

A few facts

- x265 is about 20x slower than x264; EVE-VP9 is about 5x slower
- Test sequences represent about 8 hours of visual content
- Running these experiments took about 3 weeks to conclude
- 10M encodes produces
- 1M CPU hours using cloud compute resources

Summary

- Scaled objective metrics better reflect adaptive streaming application video quality VMAF more so than PSNR
- Using convex hull provides relevant QP ranges for each encoding resolution
- Dynamic optimizer offers an upper bound on RD-performance for long sequences
- DO allows for more fair comparison between codecs
- EVE-VP9 outperforms x265 for natural video sequences
- x265 outperforms EVE-VP9 for animation titles, mostly in low quality range

Video Algorithms Team @100M party

Academic research partners

University of Texas Austin

Prof. Al Bovik Todd Goodall Christos Bampis Zeina Sinno

Université de Nantes

Prof. Patrick Le Callet Lukáš Krasula

University of Southern California

Prof. C.-C. Jay Kuo Joe Yuchieh Lin Haiqiang Wang

University of Bristol

Prof. David Bull Felix Mercer Moss Mariana Afonso