





UNIVERSIDAD POLITÉCNICA DE MADRID



# Using 360 VR Video to Improve the Learning Experience in Veterinary Medicine University Degree

Esther Guervós, Jaime J. Ruiz, Pablo Pérez, Juan A. Muñoz, César Díaz and Narciso García

- Human Vision and Electronic Imaging 2019
- January 2019





# 360 VR Video for Veterinary Medicine University Degree Project Objectives

- 360VR video for practical lessons on horse surgical pathology and surgery
  - 4<sup>th</sup> year undergrads
  - Help in the retention of content  $\rightarrow$  difficult to access the hospital outside lesson times
  - Part of the regular course  $\rightarrow$  students are evaluated of those contents
- Analyze the QoE reported by students
  - Impact of presence factors on passive VR (videos) for education
  - Understand student satisfaction
  - Validate the use of compact questionnaires



# University Veterinary Hospital





bs **POLITÉCNICA** 

#### Content Preparation and Delivery



# Content evaluation Questionnaires

- Temple Presence Inventory (TPI)
- Simplified Simulator Sickness Questionnaire (sSSQ)
- Distributed Reality Experience Questionnaire (DREQ), including
  - Net Promoter Score (NPS)



# **Temple Presence Inventory**

- By Lombard & Ditton & Weinstein,
  - Based on analysis of existing presence questionnaires + experimentation
- 42 items (questions) in 8 categories (presence factors)
- Covering spatial and social presence
- Easy to adapt (remove some sections)
- Mostly 7-point Likert scale
- We represent it normalized into (-1, 1)

Presence factors:

- Spatial ("being there")
- Social presence-actor ("interact to people")
- Passive social ("observe people voices, etc")
- Active social ("smile/talk to people")
- Engagement ("mental immersion")
- Social richness (e.g. "remote" vs "immediate")
- Social realism ("would ocurr in real world")
- Perceptual realism ("feel, touch, temperature")

Lombard, M., Ditton, T. B., & Weinstein, L. (2009, November). Measuring presence: the temple presence inventory. *In Proceedings of the 12th Annual International Workshop on Presence* (pp. 1-15).





# Simplified Simulator Sickness Questionnaire

- Questions to cover globally the main SSQ elements:
- Are you experimenting now any of these symptoms?:
  - Headache, eyestrain, difficulty focusing (OCULOMOTOR)
  - Vertigo, dizziness (DISORIENTATION
  - Stomach awareness, nausea (NAUSEA)



# Distributed Reality Experience Questionnaire

- Bell Labs tool to evaluate interactive video-based XR experiences ("Distributed Reality").
- Removed questions that don't apply

|            | Factor                                  | Question                                                                         |
|------------|-----------------------------------------|----------------------------------------------------------------------------------|
| Presence   | Spatial Presence (SPRE) <sup>1</sup>    | I felt like I was actually there in the remote environment                       |
|            | - Local-Perception (LPER) <sup>1</sup>  | - I was aware-of-the events ocurring in the-real-world around-me                 |
|            | Task Completion (TASK) <sup>1</sup>     | I was able to complete the task as if it happened in the real world              |
|            | -Remote-Interaction-(LINT) <sup>1</sup> | -I-was-able to interact-normally with the elements of the remote-environment     |
|            | -Local Interaction (LINT) <sup>1</sup>  | -I-was able to interact-normally-with the objects of the real-world              |
| AV Quality | Remote Quality (REMQ) <sup>2</sup>      | Please rate the perceived quality of the <i>remote environment</i>               |
|            | -Local Quality-(LOCQ) <sup>2</sup>      | -Please-rate-the perceived quality-of your local reality-(your hands, etc.)      |
| Sickness   | In-Experience CS (IECS) <sup>3</sup>    | Did you feel any sickness or discomfort during the experience? Please rate it    |
|            | Post-experience CS (PECS) <sup>3</sup>  | Are you feeling any sickness or discomfort now (after the experience)? Please    |
|            |                                         | rate it                                                                          |
| QoE        | Global QoE (GQOE) <sup>4</sup>          | How would you rate the quality of the experience globally?                       |
|            | Would Recommend (WDRC) <sup>4</sup>     | How likely is that you would recommend this experience to a friend or colleague? |

A.Villegas, P.Perez, E. Gonzalez-Sosa, R. Kachach and J. J. Ruiz. "Towards a distributed reality: a multi-video approach to XR". Submitted to IEEE VR 2019.





# Content evaluation Experimental setup

Experiment evaluation:

- 100 students (75% female, 25% male)
- Watch the videos  $\rightarrow$  answer questionnaires
- Samsung Galaxy 8+, Samsung Gear VR, noise-cancelling headphones













# Results

# TPI and DREQ, by gender

- 78% rate the experience as good or excellent
- MOS > 4 for all categories
- Female slightly better opinions (< CI)



- High social realism
- Moderately high spatial presence
- Inter-gender difference in social active



# Results Cybersickness

- Small cybersickness (35% of light oculomotor discomfort)
- Low correlation between cybersickness factors



#### Correlation between mSSQ and DREQ cybersickness factors.

|      |      |      |       | •     |       |
|------|------|------|-------|-------|-------|
|      | IECS | PECS | OCUL  | DISO  | NAUS  |
| IECS | 1.00 | 0.72 | -0.52 | -0.49 | -0.13 |
| PECS |      | 1.00 | -0.57 | -0.60 | -0.30 |
| OCUL |      |      | 1.00  | 0.53  | 0.34  |
| DISO |      |      |       | 1.00  | 0.36  |
| NAUS |      |      |       |       | 1.00  |





# Results Net Promoter Score

"How probable is that you would recommend this to a friend or colleague?"

- $\rightarrow$  Classify into
  - → Promoters (9-10)
  - → Neutral (7-8)
  - → Detractors (0-6)

$$NPS = 100\% \frac{P - D}{P + D + N}$$

 $\rightarrow$  NPS = 14% (not bad)



Reichheld, Frederick F. "The one number you need to grow." Harvard business review 81.12 (2003): 46-55.



# Results

# Net Promoter Score

- But... classification into P,N,D (as per the original paper) was based on a clustering of the people under test
- Here 8-raters are clearly supporters  $\rightarrow$  we use a modified NPS
  - D = (0-5), N = (6-7), P = (8-10)
  - NPS = 44%



# Results TPI and DREQ by (modified) NPS

- Effective clustering of users
- Strongest differences in VQ/QoE
- Smallest differences in CS



• Strongest effect: social active, engagement, social richness



#### Conclusions

- Successfully integrated VR content into actual practical lessons
- Good acceptance and quality for this kind of experiences / contents
- Net Promoter Score
  - Useful clustering tool
  - Need additional questions for calibration (standard partitioning may be misleading)
- Slightly better responses in females (including cybersickness)
- Social presence has better discriminative factor than spatial presence in terms of user satisfaction



### Acknowledgements

This work has been partially funded by project **VINEDO IDI-20180015** ("Video Inmersivo para eventos distribuido OnDemand") from Centro para el Desarrollo Tecnológico Industrial (CDTI), Ministerio de Ciencia, Innovación y Universidades,

Spain











