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Free viewpoint television: framework that allows viewing of a 3D world by freely changingthe viewpointFree viewpoint video: can be understood as the functionality to freely navigate within realworld visual scenesDepth-Image-Based Rendering: process of synthesizing virtual views of the scene fromcaptured color images or videos with associated depth information
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New artifacts: Object shifting , Geometric distortion, …
Non uniformly distributed: artifacts mainly locate around disoccludedareas.

Quality metrics for assessing the performances of multi-view videoscompression, depth map compression and view synthesis techniques ?
.



DIBR Images database (synthesis only)
3 MPD videos ( 1024x768 ) x 7 DIBR algorithms x 4 new viewpoints -> 96 videos -> 96 images

E. Bosc et al. "Towards a new quality metric for 3-D synthesized view assessment." IEEE STSP 2011
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Frames extractfrom synthesizedsequence with abaseline ΔV=1.
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ΔV=1Spatial artifacts• Different DIBRalgorithms• Differentbaselines



Performance of usual quality metrics

“Crumbling”artifact

Shiftingartifact
Usual Image quality metrics:=> Cannot fully capture global consistentstretched/bent shapes or local geometric distortion



Beyond usual quality metrics
Metric Name

VSQA [1] Objective view synthesis quality assessment
3DswIM[2] Objective image quality assessment of 3d synthesized views

MW-PSNR[3] Morphological Wavelet Peak Signalto-Noise Ratio metric
ST-SIQA[4] Sketch-Token based synthesized image quality assessment

Common ground: quantify the change of contours as a proxy for a semantic levelannoyance
[1]Conze et al.. "Objective view synthesis quality assessment." Electronic Imaging 2012.[2]Battisti er al. "Objective image quality assessment of 3D synthesized views." Signal Processing: Image Communication 2015[3]Sandić-Stanković, et al.. DIBR synthesized image quality assessment based on morphological wavelets. Qomex 2015[4]Ling, and al. " Image quality assessment for free viewpoint video based on mid-level contours”, ICME 2017
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Beyond usual quality metrics

Common ground: quantify the change of contours as a proxy for a semantic levelannoyance

Metric PCC RMSE
VSQA 0.61 0.49
3DswIM 0.69 0.48
MP-PSNR 0.67 0.49
ST-SIAQ 0.82 0.39

[1]Conze et al.. "Objective view synthesis quality assessment." Electronic Imaging 2012.[2]Battisti er al. "Objective image quality assessment of 3D synthesized views." Signal Processing: Image Communication 2015[3]Sandić-Stanković, et al.. DIBR synthesized image quality assessment based on morphological wavelets. Qomex 2015[4]Ling, and al. " Image quality assessment for free viewpoint video based on mid-level contours”, ICME 2017



DIBR Videos database synthesis + compression
3 MPD videos ( 1024x768 ) x 7 DIBR algorithms x 4 new viewpoints + 3 bitrates -> 102 videos

E. Bosc et al. "Visual quality assessment of synthesized views in the context of 3D-TV." In 3D-TV system with depth-image-based rendering, 2013.
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ΔV=1Spatial + Temporalartifacts• Different DIBRalgorithms• Different baseline
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Performance of commonly used metrics
PCC
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Free-Viewpoint Synthesized Videos database synthesis + compression on depth map6 MPD videos (1024x768 / 1920x1080 ) x 7 depth coding algorithms x 3 bitrates -> 264 videos

codecs HRC descriptions
C1 3D-HEVC Test Model, 3D-HTM 0.4
C2 Multiview Video Coding (MVC), JM 18.4.
C3 HEVC Test Model, HM 6.1.
C4 JPEG2000, Kakadu implementation.
C5 A lossless-edge depth map coding
C6 Correlation is exploited with color frames.
C7 Z-LAR-RP, a region-based algorithm.
Original Use the real depth maps without anydegradation

time

virtual viewposition

Virtual view

Virtual path(sweep) :simulating asmooth cameramotion during atime freeze

transmitted viewsencoded depth map
E. Bosc, "A quality assessment protocol for free-viewpoint video sequences synthesized from decompressed depth data." QoMEX2013.

View navigation + Compression on Depth map• View-sweep effect• Effect compression on depth map
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Performance of commonly used metrics

P. Hanhart , Emilie Bosc, Patrick Le Callet, and Touradj Ebrahimi. "Free-viewpoint video sequences: A new challenge for objectivequality metrics." MMSP 2014. 16



Free navigation database
Factors :1. Rate-points (RP, bitrate)2. Baseline distance (V)3. Virtual path/Sweep/Trajectory (T)

Purpose:
Explore whether how observer navigate among viewsaffect how they judge the quality of the sequence
Stress the system with most challenging configurations (RP,V, T)



Camera arrangements
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Viewpointsthatcontainmovingobjects

Generating trajectories

Red cameras indicate views contain important objectsT1 (left): Sweeps were constructed at a speed of one frame per view (as what is done in MPEG)T2 (right): Sweeps were constructed at a speed of two frames per view.



Subjective score of sequence ‘Champagne’
Trajectory 1
Trajectory 2

higher quality :MOS T2 > MOS T1

lower quality :MOS T1 > MOS T2



=> The three considered factors have significant impact on the perceived quality( p=0 for B and RP, and p=0.038 for T).

three-way analysis of variance (ANOVA):Influence of Baseline (B), Rate-Points (RP) and virtual Trajectorie (T)

Does Trajectories matter ?

Ling et al. «Influence of Navigation Scan-path on Perceived Quality of Free-Viewpoint Videos» , IEEE JETCAS 2019



Trajectories matters: proposal forsubjective test design
Open questions:- Benchmarking codec : which trajectory?- How to reproduce/control interactivity?- How to identify critical trajectories ?

𐀀 Concept of HRT: Hypothetical Rendering TrajectoriesSubj. test: SRC, HRC and HRT

Ling et al. «Influence of Navigation Scan-path on Perceived Quality of Free-Viewpoint Videos» , IEEE JETCAS 2019



The lack of proper metrics for assessing the performances of multi-view videoscompression, depth map compression and view synthesis techniques
.

Can we do better? => representing and tracking the geometric distortions

White box approach (& Full reference)S. Ling, P. Le Callet Image quality assessment for DIBR synthesized views using elastic metric. ACMMM2017
Machine Learning approach (& Full reference /Non reference)S. Ling, P. Le Callet. Image quality assessment for free viewpoint video based on mid-level contours feature. ICME 2017S. Ling, P. Le Callet. How to learn the effect of non-uniform distortion on Perceived Visual Quality ? Case study usingConvolutional Sparse Coding for quality assessment of synthesized views. ICIP 2018



Elastic Metric : measuring the difference in stretching or bending between two curves

Reference (L) Twisted nose (M) Shifted nose (R)

‘What happen to my nose?’

[1]Mio, Washington, Anuj Srivastava, and Shantanu Joshi. "Onshape of plane elastic curves." International Journal of ComputerVision 73.3 (2007): 307-324.[2]Srivastava, Anuj, et al. "Shape analysis of elastic curves ineuclidean spaces." IEEE Transactions on Pattern Analysis andMachine Intelligence 33.7 (2011): 1415-1428.

[1,2]



Framework of Elastic Metric-IQA

S. Ling, P. Le Callet. Image quality assessment for DIBR synthesized views using elastic metric. ACM MM 2017

Metric PCC
SoA 0.61

EM-IQA 0.84
X. Liu et al. "Subjective andobjective video qualityassessment of 3D synthesizedviews with texture/depthcompression distortion." IEEE IP2015.

Performance onvideo DIBR dataset

Metric PCC
SoA 0.57

EM-IQA 0.80

Performance onFVV dataset



Machine Learning approach?Algo mostly generate non natural structure …non uniformly
Local & non-uniformghosting and structure inconsistency
Global MOS is not a direct proxy for Local “patch”Quality
Natural Scene Statistic (NSS) based models areglobal & generic (not only structure)=> Underestimate of local specific structure distortion



Natural Scene Statistics (NSS) based models
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PCC SROCC RMSE
NIQE [2] 0.4022 0.3673 0.6096
BIQI [3] 0.5273 0.3555 0.5657

BliindSII [4] 0.5331 0.1800 0.5633
[1] E. Bosc et al., “Towards a new quality metric for 3-D synthesized viewassessment,” IEEE J. Sel. Topics Signal Process, Nov. 2011.[2] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completelyblind’ image quality analyzer,” IEEE Signal Process. Lett., Mar. 2013[3] A. K. Moorthy and A. C. Bovik, “A two-step framework for constructingblind image quality indices,” IEEE Signal Process. Lett, May 2010.[4] M. A. Saad, A. C. Bovik, and C. Charrier, “Blind image qualityassessment: A natural scene statistics approach in the DCT domain,” IEEETrans. Image Process., Aug. 2012.

Performance of NSS based models on IRCCyN/IVC DIBR image database [1]

Database : IRCCyN/IVC DIBR image database[2] , 84 images sythesied with 7 algorthms with MOSCriteria :Pearson correlation coefficient (PCC)Spearmans rank order correlation coefficient(SROCC)Root mean squared error (RMSE)

Natural Scene Statistic (NSS) based models are global & generic(not only structure)=> Underestimate of local specific structure distortion



Machine Learning approach?Algo mostly generate non natural structure …non uniformly
Local & non-uniformghosting and structure inconsistency
Global MOS is not a direct proxy for Local “patch”Quality
Natural Scene Statistic (NSS) based models areglobal & generic (not only structure)=> Underestimate of local specific structure distortion

=> Learn structure representation instead of scenestatistics



SC & CSC could be a good candidates for learning/coding local NNS
Traditional Sparse Coding:Represent patches (instead of image) with a set of learnedatoms

[6]
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Convolutional Sparse Coding:

Sparse representations for entire image:



Sketch Token: a learned mid level representation forcontour

J. Lim and al. "Sketch tokens: A learned mid-level representation for contour and object detection." CVPR 2013

Sketch token classes: wide variety of local edge structures Pattern codebook learnt once for all



Sketch Token: a learned mid-level representation forcontour

J. Lim and al. "Sketch tokens: A learned mid-level representation for contour and object detection." CVPR 2013

Sketch token classes: wide variety of local edge structures Pattern codebook learnt once for all



SC vs. CSC

CSC SC

A comparison of convolutional (CSC) and patch-based (SC) sparserepresentations for a crop from a natural image (a).

Image from : Zeiler, Matthew D., et al."Deconvolutional networks." (2010): 2528-2535.

(b): Sparse convolutional feature map Z of (a). The
smoothly varying feature mapspreservesbetter spatial locality.

(c): Patch-based feature map Z of (a) using a slidingwindow (green). Each column in the feature mapcorresponds to the sparse vector over the filters for agiven x-location of the sliding window.As the sliding window moves the latent representationis highly unstable, changing rapidly across edges.



The Proposed CSC based No Reference Metric (CSC-NRM)
Y: CSC training setX: test image
𝐷𝑌 : Learned Dictionary
𝑣𝑐𝑠𝑐 : CSC based feature vector
𝑠𝑠𝑐𝑠: predicted quality score

Michal Sorel and Filip Sroubek, “Fast convolutional sparse coding using matrix inversion lemma,”Digital Signal Processing, vol. 55, pp. 44–51, 2016.

Framework

Kernels Learningusing fast CSC [7]

𝐷𝑌

Y

…

…patches contain non natural structure

learned structure related kernels



Collecting Data contain NNS

Patches collect from the following datasets :MCL-3DDIBR-IVC VideosFree Viewpoint synthesized videos

Rui Song, Hyunsuk Ko, and CC Kuo, “Mcl-3d: A database for stereoscopic image quality assessment using 2d-image-plus-depth source,” arXivpreprint arXiv:1405.1403, 2014.Emilie Bosc, Philippe Hanhart, Patrick Le Callet, and Touradj Ebrahimi, “A quality assessment protocol for free-viewpoint video sequencessynthesized from decompressed depth data,” in Quality of Multimedia Experience (QoMEX), 2013 Fifth International Workshop on. IEEE, 2013.[Emilie Bosc, Philippe Hanhart, Patrick Le Callet, and Touradj Ebrahimi, “A quality assessment protocol for free-viewpoint video sequencessynthesized from decompressed depth data, QoMEX .

Experts:Labeling the location of synthesized artifactsSelection of most annoying patches centering at the pre-labeled locations

Examples of selected patches



Our 88 Kernels

(a) 8 kernels of size 8×8
(c) 16 kernels of size 16×16

(d) 16 kernels of size 32 × 32 of higher energy
(b) 16 kernels of size 32 × 32 of lower energy



The Proposed CSC based No Reference Metric (CSC-NRM)
Y: CSC training setX: test image
𝐷𝑌 : Learned Dictionary
𝑣𝑐𝑠𝑐 : CSC based feature vector
𝑠𝑠𝑐𝑠: predicted quality score

Framework

Kernels Learningusing fast CSC [7]

Feature extraction 𝑣𝑐𝑠𝑐
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X

…

…patches contain non natural structure

learned structure related kernels



Activation Function
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The Proposed CSC based No Reference Metric (CSC-NRM)
Y: CSC training setX: test image
𝐷𝑌 : Learned Dictionary
𝑣𝑐𝑠𝑐 : CSC based feature vector
𝑠𝑠𝑐𝑠: predicted quality score

Framework

Kernels Learningusing fast CSC [7]

Feature extraction Quality Score Predictionusing Support VectorRegression (SVR)

MOS

𝑣𝑐𝑠𝑐

𝐷𝑌

Y

𝑠𝑐𝑠𝑐X

…

…patches contain non natural structure

learned structure related kernels



Performance of CSC-NRM
No ReferenceMetrics PCC SROCC RMSE

Natural Scene Statistics (NSS) based models
NIQE (NSS) [1] 0.4022 0.3673 0.6096
BIQI (NSS) [2] 0.5273 0.3555 0.5657

BliindSII (NSS) [3] 0.5331 0.1800 0.5633
Non Natural Structure based Model

CSC-NRM 0.8302 0.7827 0.3233

Performance of existing NSS based metrics and the proposed metric on IRCCyN/IVC DIBR image dataset

[1] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely blind’ image quality analyzer,” IEEE Signal Process. Lett., Mar. 2013[2] A. K. Moorthy and A. C. Bovik, “A two-step framework for constructing blind image quality indices,” IEEE Signal Process. Lett, May 2010.[3] M. A. Saad, A. C. Bovik, and C. Charrier, “Blind image quality assessment: A natural scene statistics approach in the DCT domain,” IEEE TIP.,Aug. 2012.[4] E. Bosc et al., “Towards a new quality metric for 3-D synthesized view assessment,” IEEE J. Sel. Topics Signal Process, Nov. 2011.



Performance of CSC-NRM (comparison with DIBRspecialized NR Metric
PCC SROCC RMSE

Non Learning based No Reference Metrics
NIQSV [1] 0.6346 0.5146 0.6167
NIQSV+ [2] 0.7114 0.6668 0.4679
APT [3] 0.7307 0.7140 0.4622

Learning based No Reference Metrics
CSC-NRM 0.8302 0.7827 0.3233

[1] Shishun Tian, Lu Zhang, Luce Morin, and Olivier Deforges, “Niqsv: A no reference image quality assessment metric for 3dsynthesizedviews,” in Acoustics, Speech and Signal Processing (ICASSP), 2017.[2] Tian, Shishun, et al. "NIQSV+: A No-Reference Synthesized View Quality Assessment Metric." IEEE Transactions on ImageProcessing 27.4 (2018): 1652-1664.[3] Ke Gu, Vinit Jakhetiya, Jun-Fei Qiao, Xiaoli Li, Weisi Lin, and Daniel Thalmann, “Model-based referenceless quality metric of 3dsynthesized images using local image description,” IEEE TIP, 2017.[4] E. Bosc et al., “Towards a new quality metric for 3-D synthesized view assessment,” IEEE J. Sel. Topics Signal Process, Nov. 2011.



CONVOLUTION SPARSE CODING WORKS ALSO FOR STICHTING / SEAMARTEFACTS IN 360

S. Ling, G. Cheung, P. Le Callet. No-Reference Quality Assessment for Stitched Panoramic Images Using Convolutional SparseCoding and Compound Feature Selection. ICME 2018

manually selected patches with stitched/seam artefacts

training dataset available ftp:\\ftp.ivc.polytech.univ-nantes.fr\LS2N_IPI_Stitched_Patches_Database\

Stitching Algo. Generate also Non Natural Structure …non uniformly distributed

Metric PCC
Solh (FR) 0.95

BLIINDS(NR) 0.11
DIVINE (NR) 0.25
Conv. SparseCoding (NR) 0,85


