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goal: deploy any perceptual quality model to
optimize “deep” image and video compression

networks.



Quick background on generative modeling
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Applications: super-resolution, denoising, frame-rate conversion,

compression (recently!)



Deep image compression (Balle et al.)
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Uniform noise as
the quantizer



Intuitions behind deep image compression modeling
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“pixel/distortion loss” “rate loss”

Ly =IIx - %13 L,

total loss:  Lyorq1 = ALg + L,

tradeoff between rate and distortion (RDO)

=> what about other pixel losses?



Perceptual optimization of deep image encoders

so far, mostly MSE, SSIM and MS-SSIM optimization
analytically tractable, differentiable, etc.

cannot use more complicated models, like VMAF
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given the specifics of each metric, can we generalize the approach to

any desired metric?



Simple idea: use a pre-trained network
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=> train network so that proxy VMAF score matches VMAF

=> 3 or 4 layers are enough



Conceptual problem with a pre-trained network

What we’re dealing with What we have for training (existing datasets)
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(a) Reconstructed Patches (b) Waterloo Dataset (c) BAPPS Dataset




“Adversarial examples”
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(a) Source Image (b) Decoded Image

(VMAF,,, = 97.74 and VMAF = 5.35)




Proposed alternating training
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Training loss intuition

Liotal = ALd + L,

|

Liotar = AaL,+ (1 —a)Ly] + L,



Predicted score

Fixing the adversarial examples
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(a) Pre-trained Model (b) Proposed alternating learning



Experimental results

Summary: VMAF BD-rate (%); (a = 0.00154); Baseline: BLS model optimized for MSE;

Test image JPEG BLSg.ccline BLSymaF proxy JP2K HEVC Intra
Mean,inmeic  78.36% 0% -23.35% -33.39% -28.23%
std 20.33% 0% 3.92% 8.77% 12.95%
ol Source Baseline (MSE) VMAFp
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Future work

still need to beat state-of-the-art codecs, such as HEVC intra
try on other generative modeling applications, e.g. de-noising,
super-resolution, etc.

=> gain better understanding of the distortions generated by these deep
models

=> video is a natural next step



