Overview of SAM Activities

Lucjan Janowski (AGH) Zhi Li (Netflix)

VQEG Meeting, Shenzhen, China Oct. 15, 2019

Talk Outline

- What is SAM?
- Early work
- Recent development
- Future plans

SAM

- SAM Statistical Analysis Methods
- Mission:
 - The SAM group addresses problems related to how to better analyze and improve data quality coming from subjective experiments and how to consider uncertainty in objective media quality predictors/models development

Goals – Long Term

- Improve methods used to draw conclusions from subjective experiments
- Understand the process of expressing opinion in a subjective experiment
- Improve subjective experiment design to facilitate analysis and applications
- Improve the analysis of objective model performances

Goals – Mid Term

- Popularize the analysis related to the subject model by publishing a white paper and ITU recommendation modification
- Revisit standardized methods for the assessment of the performance of objective model performances

Goals – Short Term

- Unify notation used for analysis
- Create a common subjective data input format
- Fix a stability problem of parameter estimation for the subject model based on Maximum Likelihood Estimation (MLE) method proposed by Li et al.

Early work (Janowski&Pinson'15)

$$U_{ij} = \psi_j + \Delta_i + \upsilon_i X + \phi_j Y$$

- U_{ij} r.v. describing raw opinion scores
- Ψ_j true quality of PVS j
- Δ_i voting bias of subject *i*
- v_i voting inconsistency (std) of subject i
- Φ_j ambiguity (std) of PVS j
- Empirical result to validate that additive model is better than multiplicative model in fitting real-world data

Early work (Li&Bampis'17)

$$U_{ij} = \psi_j + \Delta_i + \upsilon_i X + \rho_{k:k(j)=k} Y$$

- U_{ij} r.v. describing raw opinion scores
- Ψ_j true quality of PVS j
- Δ_i voting bias of subject *i*
- v_i voting inconsistency (std) of subject i
- $\rho_{k:k(j)=k}$ ambiguity (std) of SRC k
- Model outlier subjects as having large bias and inconsistency
- Maximum likelihood estimation (MLE) and belief propagation (BP) method to solve model parameters

Example Result – Li&Bampis'17

Recent Development

- Unified notations used for analysis
- SuJSON a common subjective data input format
- A simplified discrete model
- Bayesian methods to address stability issue of MLE solutions
- Application to adaptive media playout [Pérez, García et al.]
- Error origin of SRC or HRC?
- Generalized score distribution (GSD)
- Paired comparison and active learning
- Planning the number of subjects [Kjell et al.]

Unified Notations Used for Analysis

- By unifying the notations, we hope to create a common language between different subjective model algorithms, details: <u>https://arxiv.org/abs/1903.05940</u>
 - *i* for a subject
 - j for a PVS,
 - k for an SRC,
 - r for a repetition,
 - *o* for an order, and
 - h for an HRC

• *u* as a single subject answer,

- ψ (psi) as a true quality,
- Δ (Delta) as a subject bias,
- v (upsilon) as a standard deviation related with a given subject,
- ϕ (phi) as a standard deviation related with a given PVS
- ρ (rho) as a standard deviation related with a given SRC

$$\begin{split} U_{ij} &= \psi_j + \Delta_i + \upsilon_i X + \phi_j Y \quad \text{[Janowski&Pinson'15]} \\ U_{ij} &= \psi_j + \Delta_i + \upsilon_i X + \rho_{k:\boldsymbol{k}(j)=k} Y \quad \text{[Li&Bampis'17]} \end{split}$$

SuJSON – A Common Subjective Data Input Format

A Simplified Discrete Model

• Simplified discretized model $U_{ij} = Q(\psi_j + \Delta_i + v_i X)$

$$P(U_{ij} = u) = \begin{cases} \int_{-\infty}^{1.5} \frac{1}{\sqrt{2\pi\nu_i}} e^{-\frac{(u-\psi_j - \Delta_i)^2}{2\nu_i}} & u = 1\\ \int_{u-0.5}^{u+0.5} \frac{1}{\sqrt{2\pi\nu_i}} e^{-\frac{(u-\psi_j - \Delta_i)^2}{2\nu_i}} & u \in \{2, 3, 4\}\\ \int_{4.5}^{\infty} \frac{1}{\sqrt{2\pi\nu_i}} e^{-\frac{(u-\psi_j - \Delta_i)^2}{2\nu_i}} & u = 5 \end{cases}$$

 Taking into account: effect of discrete scale and clipping on two the ends
 <u>Mitigation of clipping</u>

Bayesian Methods to Address Stability Issue of MLE Solutions (Rusek et al.)

- MLE solution is a special case of more general Bayesian methods such as MAP (maximum a posteriori) estimation and full Bayesian
- Solution stability issue: $U_{ij} = Q((\psi_j \alpha) + (\Delta_i + \alpha) + (\upsilon_i \beta)X + (\psi_j + \beta)Y)$
- MAP: $\hat{\theta} = \arg \max_{\theta} \mathcal{L}(u|\theta) + \log P(\theta)$
- Full Bayesian: $\hat{\theta} = \mathbf{E}_{P(\theta|u)} \theta$.

Subjective Assessment of Adaptive Media Playout for Video Streaming [Pablo Pérez, Narciso García, and Álvaro Villegas – QoMEX 2019]

• Experiment on subjective assessment of Adaptive Media Playout (AMP)

Score for

- SRC k

- HRC g

- Subject *i*

- Dynamically changing playout speed at the video client
- Application of modified subject model

- Insights on
 - AMP quality itself
 - Subject behavior / response characterization

Error Origin of SRC or HRC?

• Compare two models: SRC-only vs. HRC-only

$$M_{src}: \quad U_j = \psi_j + \rho_{k:k(j)=k}X,$$
$$M_{hrc}: \quad U_j = \psi_j + \xi_{h:h(j)=h}X,$$

- Which one fits real data better?
- Observation: neither model fits real data well, with SRC-only worse than HRConly

Generalized Score Distribution (GSD)

$$P(X = 1) = F_1(\psi), P(X = 2) = F_2(\psi)$$

Example: If $\psi < 2$: $P(X = 1) = 2 - \psi, P(X = 2) = \psi - 1$

 $U \sim GSD(\psi, \rho)$

Paired Comparison (PC) and Active Learning

Boosting pair comparison

- Learn which pair could generate the maximum information gain (EIG)
- Bayesian theory (prior and posterior)

Objective metrics evaluation using PC data

- Can the metric determine if quality of stimuli is significantly different?
- Can the metric determine which stimulus is preferred in any different pair?

Multiple Comparisons and Planning Number of Test Subjects

- Planning and design a subjective test based on the expected power in the statistical analysis, the estimated variance and the number of comparisons, the needed number to test subjects can be estimated.
 - Journal paper: Brunnström, K. and M. Barkowsky, *Statistical quality of experience analysis: on planning the sample size and statistical significance testing*. Journal of Electronic Imaging, 2018.
 27(5): p. 11. PDF <u>http://www.diva-portal.org/smash/get/diva2:1252987/FULLTEXT01.pdf</u>
 - ITU-T contribution: P.1401 will be updated, P910, P.913 and BT.500 is still under discussion
 - R-code: https://github.com/VQEG/number-of-subjects
 - GUI: <u>https://slhck.shinyapps.io/number-of-subjects/</u> (by Werner Robitza)

Future Plans

- Prepare a document on ITU standard modification (ITU-T P.1401, ITU-R BT.500)
- Continued development on Generalized Score Distribution
- Temporal behavior analysis of subjective experiments
- Continued paired comparison (PC) methodologies investigation
 - Apply subject/SRC/HRC-based MLE analysis to PC
 - Active learning