NOKIA Bell Labs

UNIVERSIDAD POLITÉCNICA DE MADRID

Subjective Assessment of Adaptive Media Playout (AMP) for Video Streaming

¹Pablo Pérez, ²Narciso García, and ¹Álvaro Villegas

5-6-2019 – 11th International Conference on Quality of Multimedia Experience (QoMEX 2019) ¹Nokia Bell Labs, ²Universidad Politécnica de Madrid

What is AMP? ...and why should I care about it?

1000

 Ω OMEGA

2

Did you notice it?

5 © 2019 Nokia

N

- What is AMP?
 - Dynamically changing playout speed at the video client
 - Without modifying audio pitch (Waveform Similarity Overlap-Add)
- Why should you care about it?

"In live video streaming, end-to-end delay must remain constant for the whole session"

Buffer size (seconds) decided at the beginning

- Too low \rightarrow underrun (stalling)
- Too high \rightarrow high delay

- Changing playout speed → changing end-to-end delay
 - E.g. synchronize two players viewing the same stream (IDMS)

- AMP is an interesting subjective assessment problem
 - Well-defined artifact, simple to generate
 - Good test bench for subjective assessment methodologies and models

- ...but there are very few papers characterizing the effect of AMP in QoE
 - Most prior art uses ad-hoc rules ("Up to 20% gain") and symmetric cost models
 - [Rainer & Timmerer 2014] \rightarrow Only one source content
 - [Mu et al. 2017] \rightarrow Only speed increase

Target: Analyze subjective effect of AMP, including subject & content effect

Experimental Design & Methodology

Experimental Design Selection of content

- 15 SRCs, 7 HRCs
- "Demanding, but not unduly so"
- Popular content (sports, well-known speakers, well-known movies...).
- 720p50, stereo audio

ID	Туре	Name	Description
01	Sports	Sprint	Bolt wins 100m final run at Olympics
02	Sports	Goal	Real Madrid scores in football match
03	Sports	NBA	Kobe Bryant scores at NBA
04	Music	Radetzky	Radetzky March at New Year Concert
05	Music	Queen	We Are The Champions music video
06	Music	Sobral	Salvador Sobral at Eurovision final
07	Speech	PM	Prime Minister speech at Parliament
08	Speech	Show	Magic trick at TV show 'El Hormiguero'
09	Speech	News	Matias Prats introducing news
10	Fiction	Crime	Parody of crime scene show
11	Fiction	Tiempo	El Ministerio del Tiempo TV show
12	Fiction	Galaxy	Guardians of the Galaxy animation
13	Action	Rogue	Rogue One space battle scene
14	Action	Clone	Clone Wars animation: light saber fight
15	Action	Wall-E	Wall-E animation: robots

NOKIA Bell Labs

Experimental Design

Methodology and population

- Tests on computer
 - 21" HD screen
 - Headphones
 - Mplayer (*scaletempo* plugin for AMP)
 - User scores after each PVS
 - Full randomization

• Degradation Category Rating (ITU-T P.910)

Normal Speed (G = 1) Modified Speed (G = ...) Rating (DCR)

• 50 subjects (20 female, 30 male)

Subject Model

Jointly analyzing contribution to MOS of user/source

- We model subject score as a random process (similar to [Janowski & Pinson 2015])
 - Factor contributions are modeled as sum of independent gaussians
 - Main contribution: break PVS "ground truth": $\psi_j=\psi_{k,g}pprox arphi_g+\Lambda_k$

15 © 2019 Nokia

Subject Model Solving with MLE

• We compute variables by Maximum Likelihood Estimation (MLE) using Netflix Sureal framework [Li & Bampis 2017].

$$L(\theta) = \log (P)(\{u_{i,k,h}\} | \theta)$$

$$= \log (P)(\{u_{i,k,h}\} | \{\varphi_g\}, \{\Lambda_k\}, \{\rho_k\}, \{\Delta_i\}, \{\upsilon_i\})$$

$$(10)$$

$$= \sum_{i,k,g} -\frac{1}{2} \log \left(\rho_k^2 + \upsilon_i^2\right) - \frac{1}{2} \frac{\left(u_{i,k,g} - \varphi_g - \Lambda_k - \Delta_i\right)^2}{\rho_k^2 + \upsilon_i^2}$$

$$(11)$$

Results

Effect of Rate Gain Aggregate results

- Safe limit: +/- 10%
- MOS (G) > MOS (1/G)
 - For any G > 1
- Same results using MLE / DMLE
- Simple cost model

DMOS(G) =
$$\begin{cases} -4.1 + 9.1G, & \text{for } G \le 1\\ 9.9 - 4.9G, & \text{for } G > 1 \end{cases}$$

Effect of Subject

$U_{i,k,g} = \varphi_g + \Delta_i + \upsilon_i X + \Lambda_k + \rho_k Y$

Bias variability is higher than in (reported) video coding tests

- Subject bias follows a normal distribution
 - Higher variance than [Janowski & Pinson 2015] (σ = 0.34).
- Subject inconsistency
 - Uncorrelated with bias

Effect of Subject Some subjects are less reliable

• Should we reject unreliable subjects?

NOKIA Bell Labs

FalsePositives(%) + FalseNegatives(%)

Effect of Content

Significant variability between different SRCs

• Some sequences are more resilient to AMP

$U_{i,k,g} = \varphi_g + \Delta_i + \upsilon_i X + \Lambda_k + \rho_k Y$

Effect of Content

Strong variability of content resiliency and ambiguity

- Content resilience ~ normal distribution
 - 1.5 difference between highest (15: *Wall-E*) and lowest (05: *Queen*)
- Content ambiguity
 - Higher than in [Li & Bampis 2017]
 - Some sources (13: *Rogue One*) are extremely difficult to rate

NOKIA Bell Labs

Effect of Content Content Analysis

- Significant difference from content to content
- Qualitatively
 - Best responses: animation (12, 14, 15), melodic music (06)
 - Worst responses: rhythmic music (04, 05)
 - Difficult to rate: action scenes (13-15)
- Quantitatively
 - No simple relationship with "trivial" video parameters
 - Weak correlation with SI/TI

Conclusions

Conclusions Wrap Up

- 1. We have performed the most complete subjective test for AMP quality so far
- 2. We have provided practical guidelines for AMP implementation
 - "Rule of thumb": 10% rate variation max
 - Slower speed is worse than higher speed
- 3. We have build a scoring model considering HRC and SRC fully separately
 - Useful for subject and content characterization
 - Could be used for other artifacts (e.g. compression)
- 4. We have characterized (qualitatively) content resilience to AMP
 - Quantitative characterization is not trivial: simple features (e.g. TI/SI) do not work

NOKIA Bell Labs

Subjective Assessment of Adaptive Media Playout (AMP) for Video Streaming

Questions?

Statistical analysis ANOVA and Tukey HSD

ANOVA TABLE FOR THE SCORES										
	SS	df	F	P(>F)	η^2	ω^2				
C(G)	5612	6	1120	0.000***	0.50	0.50				
C(SRC)	795	14	68	0.000***	0.07	0.07				
C(G):C(SRC)	553	840	7.9	0.000***	0.05	0.04				
Residual	4298	5145	-	-	-	-				

TABLE II

*** p < 0.001

Relationship of AER vs Bias / Uncertainty

Effect of content and subjects Subset of subject / contents

Comparison with prior art

G	MOS	DMOS	MLE	DMLE	[16]	[17]
0.67	1.72 ± 0.07	2.07 ± 0.08	1.67	2.04	4.51	-
0.80	2.84 ± 0.09	3.16 ± 0.09	2.78	3.11	4.81	-
0.90	4.14 ± 0.07	4.40 ± 0.06	4.17	4.39	4.94	-
1.00	4.64 ± 0.05	5.00 ± 0.00	4.68	5.00	5.00	4.99
1.10	4.37 ± 0.06	4.62 ± 0.05	4.41	4.60	5.00	4.45
1.25	3.45 ± 0.09	3.75 ± 0.08	3.46	3.74	4.97	3.74
1.50	2.24 ± 0.08	2.59 ± 0.09	2.22	2.58	4.79	2.80

COMPARISON OF MODELS

[16] Rainer & Timmerer, 2014[17] Mu *et al.*, 2017

 $\pm CI$ means 95% Confidence Interval. CI for MLE and DMLE is 0.06 $\forall G$.

