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What is AMP?
…and why should I care about it?
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Did you notice it?
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…and why should I care about it?
What is Adaptive Media Playout?

• What is AMP?
• Dynamically changing playout speed at the video client
• Without modifying audio pitch (Waveform Similarity Overlap-Add)

• Why should you care about it?
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…and why should I care about it?
What is Adaptive Media Playout?

“In live video streaming, end-to-end delay must remain constant for the whole session”

Buffer size (seconds) decided at the beginning
- Too low à underrun (stalling)
- Too high à high delay

50 fps 50 fps

tAZ = Constant
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…and why should I care about it?
What is Adaptive Media Playout?

• Changing playout speed è changing end-to-end delay
• E.g. synchronize two players viewing the same stream (IDMS)

• AMP is an interesting subjective assessment problem
• Well-defined artifact, simple to generate
• Good test bench for subjective assessment methodologies and models

50 fps variable fps

tAZ = Variable
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…and why should I care about it?
What is Adaptive Media Playout?

• …but there are very few papers characterizing the effect of AMP in QoE
• Most prior art uses ad-hoc rules (“Up to 20% gain”) and symmetric cost models
• [Rainer & Timmerer 2014] à Only one source content
• [Mu et al. 2017] à Only speed increase

Target: Analyze subjective effect of AMP, including subject & content effect
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Experimental 
Design & 
Methodology
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Selection of content
Experimental Design TABLE I

SOURCE CONTENTS

ID Type Name Description
01 Sports Sprint Bolt wins 100m final run at Olympics
02 Sports Goal Real Madrid scores in football match
03 Sports NBA Kobe Bryant scores at NBA
04 Music Radetzky Radetzky March at New Year Concert
05 Music Queen We Are The Champions music video
06 Music Sobral Salvador Sobral at Eurovision final
07 Speech PM Prime Minister speech at Parliament
08 Speech Show Magic trick at TV show ‘El Hormiguero’
09 Speech News Matias Prats introducing news
10 Fiction Crime Parody of crime scene show
11 Fiction Tiempo El Ministerio del Tiempo TV show
12 Fiction Galaxy Guardians of the Galaxy animation
13 Action Rogue Rogue One space battle scene
14 Action Clone Clone Wars animation: light saber fight
15 Action Wall-E Wall-E animation: robots

and validate the model, and therefore its results might not be
generalizable to other contents. Mu et al. tested six different
sources, as well as five speed gains (⇥1.1 to ⇥2) and four
durations (1–8 seconds) of AMP application [17]. They also
developed a model for AMP quality impact depending on
gain and time, which shows that the effect of duration in
quality starts to saturate at about 6 seconds. However, they
only covered speed increase (not decrease), and the impact of
the source content in the QoE was not addressed.

In this paper, we try to overcome some of the limitations
of the previous studies and, in particular, the influence of
the content source and the characterization of the users. We
have designed an experiment with a careful selection of the
sources, which has been evaluated by a high number of users,
described in Section II. Results have been evaluated with
standard statistical tools (Section III), and a user model has
been developed to account for the contribution of source and
user to the scores (Section IV). Section V discusses the results,
and Section VI presents the conclusions.

II. EXPERIMENTAL DESIGN

One of our main concerns when designing the experiment
was getting a set of contents and impairments that does not
underestimate the effect of AMP in QoE. As there are very few
previous experiments on the topic, it is particularly relevant to
avoid overfitting the results to a particular set of sources.

With this purpose, we have selected a set of 15 different
content sources which are “demanding, but not unduly so”
[18], summarized in Table I. Sources belong to one of these
categories: Sports, Music, Speech (non-fiction, person speak-
ing to camera), Fiction (fiction contents, people speaking),
Action (fiction contents, action scenes). Sources 12, 14 and
15 come from animation/CGI content. Sequences are selected
to have a recognizable time structure, so that any distortion
in playout speed is easy to identify. They are cuts from very
popular sports, music pieces, TV shows and movies, available
on the internet (YouTube, rtve.es, etc.). Speakers in the Speech

category are well-known personalities, whose voice and speech
dynamics are quite recognizable by an average user.

Fig. 1. MOS and DMOS for each speed gain G.

For the test, one 10 second sequence was cut from each one
of the original sources. Sequences had a resolution of 1280 ⇥
720 and 50 frames per second, as well as stereo audio, with
enough bitrate to present no visible coding artifact. In each of
the sequences, a playout rate variation was introduced: after
the first 4 seconds, the playout speed was changed to G times
the original. Values of G were 0.67, 0.8, 0.9, 1.0 (hidden
reference), 1.1, 1.25 and 1.5. We decided to introduce the
variation in the middle of the sequence to capture the response
of the user to a speed change, similarly to what was done by
Mu et al. [17]. The duration of the impairment was then about
6 seconds, which should be enough to capture its severity
according to the same study.

The subjective test was run in a 21-inch computer screen
with HD resolution. Users sat in front of the screen at the
distance they selected, and wore headphones for the audio. The
sequences were randomly shown to the user by an application,
and after each of them the user had to score it. The test
application used Mplayer to display the content and to modify
playback rate using the ScaleTempo open source plugin1.

The scoring of the sequences was done using Degradation
Category Rating (DCR) [19]. As all the sequences included
the reference speed at the beginning, the experiment can be
considered a sort of double stimulus, and therefore DCR is a
suitable scale for it. Besides, we wanted to capture whether
the speed change was perceptible and, if it was, whether it
was annoying or not, and this is perfectly captured by DCR,
unlike other scales as Absolute Category Rating.

50 users (20 female, 30 male) took part on the experiment.
All of them were university students (18-25 years old). Each
participant rated the full combination of sources and rate
variations (15⇥ 7).

III. RESULTS

Fig. 1 shows the Mean Opinion Score (MOS) for each of
the values of the speed gain G. Differential MOS (DMOS)
has also been computed using the hidden reference (G = 1)
and the crushing algorithm for values higher than 5 defined in
ITU-T P.910 [19].

1http://scaletempo.sourceforge.net

• 15 SRCs, 7 HRCs
• “Demanding, but not unduly so”
• Popular content (sports, well-known 

speakers, well-known movies…).
• 720p50, stereo audio

G =   

10s

4s

Normal Speed
G = 1

0.67, 0.8. 0.9,
1 (hidden ref)
1.1, 1.25, 1.5
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Methodology and population
Experimental Design

• Tests on computer
• 21” HD screen
• Headphones
• Mplayer (scaletempo plugin for AMP)
• User scores after each PVS
• Full randomization

• Degradation Category Rating (ITU-T P.910)

• 50 subjects (20 female, 30 male)

Modified Speed (G =  …)Normal Speed
(G = 1)

Rating
(DCR)
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Jointly analyzing contribution to MOS of user/source
Subject Model

• We model subject score as a random process (similar to [Janowski & Pinson 2015])
• Factor contributions are modeled as sum of independent gaussians
• Main contribution: break PVS “ground truth”: 

a b c
Fig. 4. a) Distribution of scores for each speed gain. b) Proportion of rate of false positives (for G = 1) and false negatives (for G 2 {0.67, 1.5}) for each
user, as well as the average between both (AER); users are sorted by AER. c) Variations of the scores for subsets of users and sources.

Fig. 5. User model. a) User bias �i, sorted from minimum to maximum. b) Content resilience ⇤k , sorted from minimum to maximum; source IDs are
labeled. c) User variability �i, sorted by �i. d) Content ambiguity ⇢k , sorted by ⇤k .

stochastic voting model based on the works of Janowski and
Pinson [20] and Li and Bampis [21]. Our starting point is the
model in [21]:

Ui,j =  j +�i + �iX + ⇢k(j)Y (2)

where the evaluation of each user i to each Processed Video
Sequence (PVS) j is modeled as a random variable Ui,j

depending on the true quality of the PVS  j , the user bias
and inconsistency (�i, �i), and the content ambiguity of each
source k (⇢k(j)), and:

X,Y ⇠ N (0, 1) (3)

Each PVS j is actually the combination of a source k and
a rate gain g. To simplify the analysis, we assume that the

contribution of each of those components to the PVS quality
is additive and independent, in what can be seen as a first-order
approximation to the actual (unknown) relation:

 j =  k,g ⇡ 'g + ⇤k (4)

where 'g is the quality value associated to the rate gain
g and ⇤k is the content resilience to the rate variation. This
allows us to write the scoring model as:

Ui,k,g = 'g +�i + �iX + ⇤k + ⇢kY (5)

Or, alternatively

Ui,k,g = 'g + Xi + Yk (6)

where

a b c
Fig. 4. a) Distribution of scores for each speed gain. b) Proportion of rate of false positives (for G = 1) and false negatives (for G 2 {0.67, 1.5}) for each
user, as well as the average between both (AER); users are sorted by AER. c) Variations of the scores for subsets of users and sources.

Fig. 5. User model. a) User bias �i, sorted from minimum to maximum. b) Content resilience ⇤k , sorted from minimum to maximum; source IDs are
labeled. c) User variability �i, sorted by �i. d) Content ambiguity ⇢k , sorted by ⇤k .

stochastic voting model based on the works of Janowski and
Pinson [20] and Li and Bampis [21]. Our starting point is the
model in [21]:

Ui,j =  j +�i + �iX + ⇢k(j)Y (2)

where the evaluation of each user i to each Processed Video
Sequence (PVS) j is modeled as a random variable Ui,j

depending on the true quality of the PVS  j , the user bias
and inconsistency (�i, �i), and the content ambiguity of each
source k (⇢k(j)), and:

X,Y ⇠ N (0, 1) (3)

Each PVS j is actually the combination of a source k and
a rate gain g. To simplify the analysis, we assume that the

contribution of each of those components to the PVS quality
is additive and independent, in what can be seen as a first-order
approximation to the actual (unknown) relation:

 j =  k,g ⇡ 'g + ⇤k (4)

where 'g is the quality value associated to the rate gain
g and ⇤k is the content resilience to the rate variation. This
allows us to write the scoring model as:

Ui,k,g = 'g +�i + �iX + ⇤k + ⇢kY (5)

Or, alternatively

Ui,k,g = 'g + Xi + Yk (6)

where

Score for
- Subject i
- Source k

- Gain g

AMP score 

subject 
bias

subject 
inconsistency

content 
resilience

content 
ambiguity
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user, as well as the average between both (AER); users are sorted by AER. c) Variations of the scores for subsets of users and sources.

Fig. 5. User model. a) User bias �i, sorted from minimum to maximum. b) Content resilience ⇤k , sorted from minimum to maximum; source IDs are
labeled. c) User variability �i, sorted by �i. d) Content ambiguity ⇢k , sorted by ⇤k .

stochastic voting model based on the works of Janowski and
Pinson [20] and Li and Bampis [21]. Our starting point is the
model in [21]:

Ui,j =  j +�i + �iX + ⇢k(j)Y (2)

where the evaluation of each user i to each Processed Video
Sequence (PVS) j is modeled as a random variable Ui,j

depending on the true quality of the PVS  j , the user bias
and inconsistency (�i, �i), and the content ambiguity of each
source k (⇢k(j)), and:

X,Y ⇠ N (0, 1) (3)

Each PVS j is actually the combination of a source k and
a rate gain g. To simplify the analysis, we assume that the

contribution of each of those components to the PVS quality
is additive and independent, in what can be seen as a first-order
approximation to the actual (unknown) relation:

 j =  k,g ⇡ 'g + ⇤k (4)

where 'g is the quality value associated to the rate gain
g and ⇤k is the content resilience to the rate variation. This
allows us to write the scoring model as:

Ui,k,g = 'g +�i + �iX + ⇤k + ⇢kY (5)

Or, alternatively

Ui,k,g = 'g + Xi + Yk (6)

where
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Solving with MLE

• We compute variables by Maximum Likelihood Estimation (MLE) using Netflix Sureal
framework [Li & Bampis 2017].

TABLE III
COMPARISON OF MODELS

G MOS DMOS MLE DMLE [16] [17]

0.67 1.72± 0.07 2.07± 0.08 1.67 2.04 4.51 -
0.80 2.84± 0.09 3.16± 0.09 2.78 3.11 4.81 -
0.90 4.14± 0.07 4.40± 0.06 4.17 4.39 4.94 -
1.00 4.64± 0.05 5.00± 0.00 4.68 5.00 5.00 4.99
1.10 4.37± 0.06 4.62± 0.05 4.41 4.60 5.00 4.45
1.25 3.45± 0.09 3.75± 0.08 3.46 3.74 4.97 3.74
1.50 2.24± 0.08 2.59± 0.09 2.22 2.58 4.79 2.80

±CI means 95% Confidence Interval. CI for MLE and DMLE is 0.06 8G.

Xi ⇠ N (�i, �i) (7)
Yk ⇠ N (⇤k, ⇢k) (8)

To find the values of the model parameters, we have
used Maximum Likelihood Estimation (MLE) with the Belief
Propagation algorithm proposed in [21] and the following log-
likelihood function:

L(✓) = log (P )({ui,k,h}|✓) (9)
= log (P )({ui,k,h}|{'g}, {⇤k}, {⇢k}, {�i}, {�i})

(10)

=

X

i,k,g

�1

2
log

�
⇢2k + �2

i

�
� 1

2

(ui,k,g � 'g � ⇤k ��i)
2

⇢2k + �2
i

(11)

The results for the MLE 'g are identical to the MOS,
within confidence intervals (see Table III). The rest of the
parameters are displayed in Fig. 5. Both �k and ⇤k follow
normal distributions, according to a D’Agostino and Pearson’s
test, with:

�k ⇠ N (�0.02, 0.40) (12)
⇤k ⇠ N (0.03, 0.38) (13)

V. DISCUSSION

A. Average quality

Table III shows the results of our tests, including confidence
intervals. DMLE is the maximum likelihood estimation of
the differential scores used to compute DMOS. The models
from Rainer and Timmerer [16] and Mu et al. [17] (for AMP
duration of 6 seconds) are also displayed.

Our results of DMOS/DMSE are consistent with [17], which
is the only work, to our knowledge, which has performed
subjective tests with realistic content for video streaming.
The model of [16] clearly overestimates the quality, as it has
been developed from a single animation content, with high
resilience to speed variations. Also, the assumption that 25%
variations are not perceptible and 50% variations are accept-
able [8] is too optimistic: a 10% of maximum variation is much
safer in terms of not being noticeable or, at least, annoying. It

Fig. 6. Scatter plots of ⇤k vs. TI (left) and SI (right), including linear fit
and coefficient of determination r2.

is also worth noting that even ±10% variations are statistically
significantly different from the reference. Additionally, most of
the cost models use symetrical degradations for speed decrease
and increase (e.g. [10], [13], [14]), neglecting the fact that the
former has higher impact in quality than the latter.

From our results, we can propose a simple piecewise linear
fit as cost model:

DMOS(G) =

(
�4.1 + 9.1G, for G  1

9.9� 4.9G, for G > 1
(14)

However, we have provided the ground truth values in Table
III so that it is easy for anyone to use smoother interpolators,
such as higher order polynomials, if required.

B. Impact of source

We have shown that there is significant variation in the
results from content to content. Differences in content re-
silience to AMP (⇤k) across sources (Fig. 5) are consistent
with the post-hoc analysis of the user scores (Fig.3), which,
together with the equality of MLE and MOS scores, supports
the validity of our user model parameter computation. Addi-
tionally, content ambiguity ⇢k is higher that the one reported
for subjective analysis of coding artifacts [21].

Unfortunately, there is no trivial relationship between source
influence and simple low-level features of the content. Fig. 6
shows the low correlation between the content resilience
⇤k and basic video statistics such as Temporal Information
and Spatial Information, as defined in [19]. Using motion
information as in [15] or [16] does not seem sufficient to
characterize the content.

Qualitatively, the best responses have been obtained for
animation sources (12, 14, 15) and action (13-15). Action

sequences are, on the other hand, more difficult to evaluate
(higher ⇢k). Rhythmic music (04, 05) is strongly affected by
AMP, unlike melodic music (06). Further research should be
done to describe all these properties quantitatively.

C. Impact of user

User bias and variability behaves similarly to other types
of subjective assessment, although the distribution of bias is
wider (� = 0.40) than what has been reported for evaluation of
video capture and compression artifacts (� = 0.34 [20]). This
may have relation with the fact that users are less familiar to

Subject Model
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Results
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Aggregate results
Effect of Rate Gain

• Safe limit: +/- 10%

• MOS (G) > MOS (1/G)
• For any G > 1

• Same results using MLE / DMLE

• Simple cost model

TABLE III
COMPARISON OF MODELS

G MOS DMOS MLE DMLE [16] [17]

0.67 1.72± 0.07 2.07± 0.08 1.67 2.04 4.51 -
0.80 2.84± 0.09 3.16± 0.09 2.78 3.11 4.81 -
0.90 4.14± 0.07 4.40± 0.06 4.17 4.39 4.94 -
1.00 4.64± 0.05 5.00± 0.00 4.68 5.00 5.00 4.99
1.10 4.37± 0.06 4.62± 0.05 4.41 4.60 5.00 4.45
1.25 3.45± 0.09 3.75± 0.08 3.46 3.74 4.97 3.74
1.50 2.24± 0.08 2.59± 0.09 2.22 2.58 4.79 2.80

±CI means 95% Confidence Interval. CI for MLE and DMLE is 0.06 8G.

Xi ⇠ N (�i, �i) (7)
Yk ⇠ N (⇤k, ⇢k) (8)

To find the values of the model parameters, we have
used Maximum Likelihood Estimation (MLE) with the Belief
Propagation algorithm proposed in [21] and the following log-
likelihood function:

L(✓) = log (P )({ui,k,h}|✓) (9)
= log (P )({ui,k,h}|{'g}, {⇤k}, {⇢k}, {�i}, {�i})

(10)

=

X

i,k,g

�1

2
log

�
⇢2k + �2

i

�
� 1
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(ui,k,g � 'g � ⇤k ��i)
2

⇢2k + �2
i

(11)

The results for the MLE 'g are identical to the MOS,
within confidence intervals (see Table III). The rest of the
parameters are displayed in Fig. 5. Both �k and ⇤k follow
normal distributions, according to a D’Agostino and Pearson’s
test, with:

�k ⇠ N (�0.02, 0.40) (12)
⇤k ⇠ N (0.03, 0.38) (13)

V. DISCUSSION

A. Average quality

Table III shows the results of our tests, including confidence
intervals. DMLE is the maximum likelihood estimation of
the differential scores used to compute DMOS. The models
from Rainer and Timmerer [16] and Mu et al. [17] (for AMP
duration of 6 seconds) are also displayed.

Our results of DMOS/DMSE are consistent with [17], which
is the only work, to our knowledge, which has performed
subjective tests with realistic content for video streaming.
The model of [16] clearly overestimates the quality, as it has
been developed from a single animation content, with high
resilience to speed variations. Also, the assumption that 25%
variations are not perceptible and 50% variations are accept-
able [8] is too optimistic: a 10% of maximum variation is much
safer in terms of not being noticeable or, at least, annoying. It

Fig. 6. Scatter plots of ⇤k vs. TI (left) and SI (right), including linear fit
and coefficient of determination r2.

is also worth noting that even ±10% variations are statistically
significantly different from the reference. Additionally, most of
the cost models use symetrical degradations for speed decrease
and increase (e.g. [10], [13], [14]), neglecting the fact that the
former has higher impact in quality than the latter.

From our results, we can propose a simple piecewise linear
fit as cost model:

DMOS(G) =

(
�4.1 + 9.1G, for G  1

9.9� 4.9G, for G > 1
(14)

However, we have provided the ground truth values in Table
III so that it is easy for anyone to use smoother interpolators,
such as higher order polynomials, if required.

B. Impact of source

We have shown that there is significant variation in the
results from content to content. Differences in content re-
silience to AMP (⇤k) across sources (Fig. 5) are consistent
with the post-hoc analysis of the user scores (Fig.3), which,
together with the equality of MLE and MOS scores, supports
the validity of our user model parameter computation. Addi-
tionally, content ambiguity ⇢k is higher that the one reported
for subjective analysis of coding artifacts [21].

Unfortunately, there is no trivial relationship between source
influence and simple low-level features of the content. Fig. 6
shows the low correlation between the content resilience
⇤k and basic video statistics such as Temporal Information
and Spatial Information, as defined in [19]. Using motion
information as in [15] or [16] does not seem sufficient to
characterize the content.

Qualitatively, the best responses have been obtained for
animation sources (12, 14, 15) and action (13-15). Action

sequences are, on the other hand, more difficult to evaluate
(higher ⇢k). Rhythmic music (04, 05) is strongly affected by
AMP, unlike melodic music (06). Further research should be
done to describe all these properties quantitatively.

C. Impact of user

User bias and variability behaves similarly to other types
of subjective assessment, although the distribution of bias is
wider (� = 0.40) than what has been reported for evaluation of
video capture and compression artifacts (� = 0.34 [20]). This
may have relation with the fact that users are less familiar to

a b c
Fig. 4. a) Distribution of scores for each speed gain. b) Proportion of rate of false positives (for G = 1) and false negatives (for G 2 {0.67, 1.5}) for each
user, as well as the average between both (AER); users are sorted by AER. c) Variations of the scores for subsets of users and sources.

Fig. 5. User model. a) User bias �i, sorted from minimum to maximum. b) Content resilience ⇤k , sorted from minimum to maximum; source IDs are
labeled. c) User variability �i, sorted by �i. d) Content ambiguity ⇢k , sorted by ⇤k .

stochastic voting model based on the works of Janowski and
Pinson [20] and Li and Bampis [21]. Our starting point is the
model in [21]:

Ui,j =  j +�i + �iX + ⇢k(j)Y (2)

where the evaluation of each user i to each Processed Video
Sequence (PVS) j is modeled as a random variable Ui,j

depending on the true quality of the PVS  j , the user bias
and inconsistency (�i, �i), and the content ambiguity of each
source k (⇢k(j)), and:

X,Y ⇠ N (0, 1) (3)

Each PVS j is actually the combination of a source k and
a rate gain g. To simplify the analysis, we assume that the

contribution of each of those components to the PVS quality
is additive and independent, in what can be seen as a first-order
approximation to the actual (unknown) relation:

 j =  k,g ⇡ 'g + ⇤k (4)

where 'g is the quality value associated to the rate gain
g and ⇤k is the content resilience to the rate variation. This
allows us to write the scoring model as:

Ui,k,g = 'g +�i + �iX + ⇤k + ⇢kY (5)

Or, alternatively

Ui,k,g = 'g + Xi + Yk (6)

where
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Bias variability is higher than in (reported) video coding tests
Effect of Subject

• Subject bias follows a normal distribution
• Higher variance than [Janowski & Pinson 

2015] (s = 0.34).

• Subject inconsistency 
• Uncorrelated with bias

TABLE III
COMPARISON OF MODELS

G MOS DMOS MLE DMLE [16] [17]

0.67 1.72± 0.07 2.07± 0.08 1.67 2.04 4.51 -
0.80 2.84± 0.09 3.16± 0.09 2.78 3.11 4.81 -
0.90 4.14± 0.07 4.40± 0.06 4.17 4.39 4.94 -
1.00 4.64± 0.05 5.00± 0.00 4.68 5.00 5.00 4.99
1.10 4.37± 0.06 4.62± 0.05 4.41 4.60 5.00 4.45
1.25 3.45± 0.09 3.75± 0.08 3.46 3.74 4.97 3.74
1.50 2.24± 0.08 2.59± 0.09 2.22 2.58 4.79 2.80

±CI means 95% Confidence Interval. CI for MLE and DMLE is 0.06 8G.

Xi ⇠ N (�i, �i) (7)
Yk ⇠ N (⇤k, ⇢k) (8)

To find the values of the model parameters, we have
used Maximum Likelihood Estimation (MLE) with the Belief
Propagation algorithm proposed in [21] and the following log-
likelihood function:

L(✓) = log (P )({ui,k,h}|✓) (9)
= log (P )({ui,k,h}|{'g}, {⇤k}, {⇢k}, {�i}, {�i})

(10)

=
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�1

2
log

�
⇢2k + �2

i

�
� 1

2

(ui,k,g � 'g � ⇤k ��i)
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(11)

The results for the MLE 'g are identical to the MOS,
within confidence intervals (see Table III). The rest of the
parameters are displayed in Fig. 5. Both �k and ⇤k follow
normal distributions, according to a D’Agostino and Pearson’s
test, with:

�k ⇠ N (�0.02, 0.40) (12)
⇤k ⇠ N (0.03, 0.38) (13)

V. DISCUSSION

A. Average quality

Table III shows the results of our tests, including confidence
intervals. DMLE is the maximum likelihood estimation of
the differential scores used to compute DMOS. The models
from Rainer and Timmerer [16] and Mu et al. [17] (for AMP
duration of 6 seconds) are also displayed.

Our results of DMOS/DMSE are consistent with [17], which
is the only work, to our knowledge, which has performed
subjective tests with realistic content for video streaming.
The model of [16] clearly overestimates the quality, as it has
been developed from a single animation content, with high
resilience to speed variations. Also, the assumption that 25%
variations are not perceptible and 50% variations are accept-
able [8] is too optimistic: a 10% of maximum variation is much
safer in terms of not being noticeable or, at least, annoying. It

Fig. 6. Scatter plots of ⇤k vs. TI (left) and SI (right), including linear fit
and coefficient of determination r2.

is also worth noting that even ±10% variations are statistically
significantly different from the reference. Additionally, most of
the cost models use symetrical degradations for speed decrease
and increase (e.g. [10], [13], [14]), neglecting the fact that the
former has higher impact in quality than the latter.

From our results, we can propose a simple piecewise linear
fit as cost model:

DMOS(G) =

(
�4.1 + 9.1G, for G  1

9.9� 4.9G, for G > 1
(14)

However, we have provided the ground truth values in Table
III so that it is easy for anyone to use smoother interpolators,
such as higher order polynomials, if required.

B. Impact of source

We have shown that there is significant variation in the
results from content to content. Differences in content re-
silience to AMP (⇤k) across sources (Fig. 5) are consistent
with the post-hoc analysis of the user scores (Fig.3), which,
together with the equality of MLE and MOS scores, supports
the validity of our user model parameter computation. Addi-
tionally, content ambiguity ⇢k is higher that the one reported
for subjective analysis of coding artifacts [21].

Unfortunately, there is no trivial relationship between source
influence and simple low-level features of the content. Fig. 6
shows the low correlation between the content resilience
⇤k and basic video statistics such as Temporal Information
and Spatial Information, as defined in [19]. Using motion
information as in [15] or [16] does not seem sufficient to
characterize the content.

Qualitatively, the best responses have been obtained for
animation sources (12, 14, 15) and action (13-15). Action

sequences are, on the other hand, more difficult to evaluate
(higher ⇢k). Rhythmic music (04, 05) is strongly affected by
AMP, unlike melodic music (06). Further research should be
done to describe all these properties quantitatively.

C. Impact of user

User bias and variability behaves similarly to other types
of subjective assessment, although the distribution of bias is
wider (� = 0.40) than what has been reported for evaluation of
video capture and compression artifacts (� = 0.34 [20]). This
may have relation with the fact that users are less familiar to

a b c
Fig. 4. a) Distribution of scores for each speed gain. b) Proportion of rate of false positives (for G = 1) and false negatives (for G 2 {0.67, 1.5}) for each
user, as well as the average between both (AER); users are sorted by AER. c) Variations of the scores for subsets of users and sources.

Fig. 5. User model. a) User bias �i, sorted from minimum to maximum. b) Content resilience ⇤k , sorted from minimum to maximum; source IDs are
labeled. c) User variability �i, sorted by �i. d) Content ambiguity ⇢k , sorted by ⇤k .

stochastic voting model based on the works of Janowski and
Pinson [20] and Li and Bampis [21]. Our starting point is the
model in [21]:

Ui,j =  j +�i + �iX + ⇢k(j)Y (2)

where the evaluation of each user i to each Processed Video
Sequence (PVS) j is modeled as a random variable Ui,j

depending on the true quality of the PVS  j , the user bias
and inconsistency (�i, �i), and the content ambiguity of each
source k (⇢k(j)), and:

X,Y ⇠ N (0, 1) (3)

Each PVS j is actually the combination of a source k and
a rate gain g. To simplify the analysis, we assume that the

contribution of each of those components to the PVS quality
is additive and independent, in what can be seen as a first-order
approximation to the actual (unknown) relation:

 j =  k,g ⇡ 'g + ⇤k (4)

where 'g is the quality value associated to the rate gain
g and ⇤k is the content resilience to the rate variation. This
allows us to write the scoring model as:

Ui,k,g = 'g +�i + �iX + ⇤k + ⇢kY (5)

Or, alternatively

Ui,k,g = 'g + Xi + Yk (6)

where
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Some subjects are less reliable
Effect of Subject

• False Positives (~27%)
• Impairment perceived, even 

when there is not!

• False Negatives (~5%)
• No impairment perceived, 

even when it is strong!

• Errors unevenly distributed 
across subjects

• Should we reject unreliable 
subjects?

Fig. 2. MOS for each speed gain and source.

TABLE II
ANOVA TABLE FOR THE SCORES

SS df F P (> F ) ⌘2 !2

C(G) 5612 6 1120 0.000*** 0.50 0.50
C(SRC) 795 14 68 0.000*** 0.07 0.07
C(G):C(SRC) 553 840 7.9 0.000*** 0.05 0.04
Residual 4298 5145 - - - -

*** p < 0.001

Fig. 3. Tukey’s HSD post-hoc analysis of subject opinion scores with respect
to source contents.

As there are 750 scores for each value of G, confidence
intervals are very narrow. This shows two preliminary findings,
all of them statistically significant under the conditions of our
test: first, even relatively small distortions in the range of 10%
are perceptible on average; and second, the perceived quality
for any G > 1 is higher than the quality of 1/G.

There are also strong variations among sources, as seen in
Fig. 2. This means that the selection of the sources also has
strong impact on the results. To test the effect of both factors
(gain G and source), a two-way ANOVA test was run (Table
II). The effect of G is statistically significant at 99.9% and
very strong (⌘2 = 0.5). The effect of the sources, as well
as the cross effect of source and gain, are also significant,
though weaker. Tukey’s Honest Significant Difference has
been computed for the sources (Fig. 3), to show which sources
behave significantly different from the others.

It is worth mentioning that parametric statistical analysis is
being used in the assumption that there is a gaussian random
process underneath the scoring. For robustness, Kruskal-Wallis
tests have been run to validate the significance of G and
source in the scores, and a post-hoc Dunn test has been run
to check the pairwise differences between sources. Results
are qualitatively equivalent to the ones presented. A similar
analysis, with equivalent results, has also been done for the
differential opinion scores (i.e. DMOS instead of MOS).

It is noticeable that the MOS value for the hidden reference
is quite below 5, meaning that some of the users voted that they
perceived some degradation even if there was none. Fig. 4 (a)
shows the distribution of scores for each G. There is a 27% of
false positives: misdetection of speed variation on its absence.
Similarly, scores of 5 for G = 0.67 (2.5%) or G = 1.5 (1.5%)
can be considered false negatives, as distortions of such level
are quite obvious.

The distribution of those kinds of “user errors” is hetero-
geneous among users, as seen in Fig. 4 (b). Some users can
be considered fully reliable (not making any of those errors)
while others raise up to a 80% of false positives in the hidden
reference. We can define a reliability score Average Error Rate

(AER) as

AER =
FalsePositives(%) + FalseNegatives(%)

2
(1)

For a first intuition on how this variability may affect
the results, we have computed MOS for the good and bad

sequences, meaning the seven sequences with higher and lower
average MOS respectively. For each of those, we have also
computed the MOS considering only the 20 most reliable users
(which had an AER of 10% or less). As seen in Fig. 4 (c), the
effect of user reliability is not negligible, but it is not critical
either: about 0.25 MOS points in the worst case. However, the
effect of content is higher: the deviation from average MOS
is about 0.5 in each direction, meaning a difference of 1.0
between good and bad sources.

IV. USER MODEL

To better understand the influence of user and source
variability on the final opinion score, we have developed a



© 2019 Nokia20

Significant variability between different SRCs
Effect of Content

• Some sequences are more resilient to AMP
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Strong variability of content resiliency and ambiguity
Effect of Content

• Content resilience ~ normal distribution
• 1.5 difference between highest (15: Wall-E) 

and lowest (05: Queen)

• Content ambiguity
• Higher than in [Li & Bampis 2017]
• Some sources (13: Rogue One) are 

extremely difficult to rate

TABLE III
COMPARISON OF MODELS

G MOS DMOS MLE DMLE [16] [17]

0.67 1.72± 0.07 2.07± 0.08 1.67 2.04 4.51 -
0.80 2.84± 0.09 3.16± 0.09 2.78 3.11 4.81 -
0.90 4.14± 0.07 4.40± 0.06 4.17 4.39 4.94 -
1.00 4.64± 0.05 5.00± 0.00 4.68 5.00 5.00 4.99
1.10 4.37± 0.06 4.62± 0.05 4.41 4.60 5.00 4.45
1.25 3.45± 0.09 3.75± 0.08 3.46 3.74 4.97 3.74
1.50 2.24± 0.08 2.59± 0.09 2.22 2.58 4.79 2.80

±CI means 95% Confidence Interval. CI for MLE and DMLE is 0.06 8G.

Xi ⇠ N (�i, �i) (7)
Yk ⇠ N (⇤k, ⇢k) (8)

To find the values of the model parameters, we have
used Maximum Likelihood Estimation (MLE) with the Belief
Propagation algorithm proposed in [21] and the following log-
likelihood function:

L(✓) = log (P )({ui,k,h}|✓) (9)
= log (P )({ui,k,h}|{'g}, {⇤k}, {⇢k}, {�i}, {�i})

(10)

=

X

i,k,g

�1

2
log

�
⇢2k + �2

i

�
� 1

2

(ui,k,g � 'g � ⇤k ��i)
2

⇢2k + �2
i

(11)

The results for the MLE 'g are identical to the MOS,
within confidence intervals (see Table III). The rest of the
parameters are displayed in Fig. 5. Both �k and ⇤k follow
normal distributions, according to a D’Agostino and Pearson’s
test, with:

�k ⇠ N (�0.02, 0.40) (12)
⇤k ⇠ N (0.03, 0.38) (13)

V. DISCUSSION

A. Average quality

Table III shows the results of our tests, including confidence
intervals. DMLE is the maximum likelihood estimation of
the differential scores used to compute DMOS. The models
from Rainer and Timmerer [16] and Mu et al. [17] (for AMP
duration of 6 seconds) are also displayed.

Our results of DMOS/DMSE are consistent with [17], which
is the only work, to our knowledge, which has performed
subjective tests with realistic content for video streaming.
The model of [16] clearly overestimates the quality, as it has
been developed from a single animation content, with high
resilience to speed variations. Also, the assumption that 25%
variations are not perceptible and 50% variations are accept-
able [8] is too optimistic: a 10% of maximum variation is much
safer in terms of not being noticeable or, at least, annoying. It

Fig. 6. Scatter plots of ⇤k vs. TI (left) and SI (right), including linear fit
and coefficient of determination r2.

is also worth noting that even ±10% variations are statistically
significantly different from the reference. Additionally, most of
the cost models use symetrical degradations for speed decrease
and increase (e.g. [10], [13], [14]), neglecting the fact that the
former has higher impact in quality than the latter.

From our results, we can propose a simple piecewise linear
fit as cost model:

DMOS(G) =

(
�4.1 + 9.1G, for G  1

9.9� 4.9G, for G > 1
(14)

However, we have provided the ground truth values in Table
III so that it is easy for anyone to use smoother interpolators,
such as higher order polynomials, if required.

B. Impact of source

We have shown that there is significant variation in the
results from content to content. Differences in content re-
silience to AMP (⇤k) across sources (Fig. 5) are consistent
with the post-hoc analysis of the user scores (Fig.3), which,
together with the equality of MLE and MOS scores, supports
the validity of our user model parameter computation. Addi-
tionally, content ambiguity ⇢k is higher that the one reported
for subjective analysis of coding artifacts [21].

Unfortunately, there is no trivial relationship between source
influence and simple low-level features of the content. Fig. 6
shows the low correlation between the content resilience
⇤k and basic video statistics such as Temporal Information
and Spatial Information, as defined in [19]. Using motion
information as in [15] or [16] does not seem sufficient to
characterize the content.

Qualitatively, the best responses have been obtained for
animation sources (12, 14, 15) and action (13-15). Action

sequences are, on the other hand, more difficult to evaluate
(higher ⇢k). Rhythmic music (04, 05) is strongly affected by
AMP, unlike melodic music (06). Further research should be
done to describe all these properties quantitatively.

C. Impact of user

User bias and variability behaves similarly to other types
of subjective assessment, although the distribution of bias is
wider (� = 0.40) than what has been reported for evaluation of
video capture and compression artifacts (� = 0.34 [20]). This
may have relation with the fact that users are less familiar to

a b c
Fig. 4. a) Distribution of scores for each speed gain. b) Proportion of rate of false positives (for G = 1) and false negatives (for G 2 {0.67, 1.5}) for each
user, as well as the average between both (AER); users are sorted by AER. c) Variations of the scores for subsets of users and sources.

Fig. 5. User model. a) User bias �i, sorted from minimum to maximum. b) Content resilience ⇤k , sorted from minimum to maximum; source IDs are
labeled. c) User variability �i, sorted by �i. d) Content ambiguity ⇢k , sorted by ⇤k .

stochastic voting model based on the works of Janowski and
Pinson [20] and Li and Bampis [21]. Our starting point is the
model in [21]:

Ui,j =  j +�i + �iX + ⇢k(j)Y (2)

where the evaluation of each user i to each Processed Video
Sequence (PVS) j is modeled as a random variable Ui,j

depending on the true quality of the PVS  j , the user bias
and inconsistency (�i, �i), and the content ambiguity of each
source k (⇢k(j)), and:

X,Y ⇠ N (0, 1) (3)

Each PVS j is actually the combination of a source k and
a rate gain g. To simplify the analysis, we assume that the

contribution of each of those components to the PVS quality
is additive and independent, in what can be seen as a first-order
approximation to the actual (unknown) relation:

 j =  k,g ⇡ 'g + ⇤k (4)

where 'g is the quality value associated to the rate gain
g and ⇤k is the content resilience to the rate variation. This
allows us to write the scoring model as:

Ui,k,g = 'g +�i + �iX + ⇤k + ⇢kY (5)

Or, alternatively

Ui,k,g = 'g + Xi + Yk (6)

where
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Content Analysis
Effect of Content

• Significant difference from content to content
• Qualitatively

• Best responses: animation (12, 14, 15), melodic music 
(06)

• Worst responses: rhythmic music (04, 05)
• Difficult to rate: action scenes (13-15)

• Quantitatively
• No simple relationship with “trivial” video parameters
• Weak correlation with SI/TI



© 2019 Nokia23

Conclusions



© 2019 Nokia24

Wrap Up
Conclusions

1. We have performed the most complete subjective test for AMP quality so far

2. We have provided practical guidelines for AMP implementation
• “Rule of thumb”: 10% rate variation max
• Slower speed is worse than higher speed

3. We have build a scoring model considering HRC and SRC fully separately
• Useful for subject and content characterization
• Could be used for other artifacts (e.g. compression)

4. We have characterized (qualitatively) content resilience to AMP
• Quantitative characterization is not trivial: simple features (e.g. TI/SI) do not work
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Questions?

Subjective Assessment of Adaptive Media Playout (AMP) for Video Streaming 
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ANOVA and Tukey HSD
Statistical analysis

Fig. 2. MOS for each speed gain and source.

TABLE II
ANOVA TABLE FOR THE SCORES

SS df F P (> F ) ⌘2 !2

C(G) 5612 6 1120 0.000*** 0.50 0.50
C(SRC) 795 14 68 0.000*** 0.07 0.07
C(G):C(SRC) 553 840 7.9 0.000*** 0.05 0.04
Residual 4298 5145 - - - -

*** p < 0.001

Fig. 3. Tukey’s HSD post-hoc analysis of subject opinion scores with respect
to source contents.

As there are 750 scores for each value of G, confidence
intervals are very narrow. This shows two preliminary findings,
all of them statistically significant under the conditions of our
test: first, even relatively small distortions in the range of 10%
are perceptible on average; and second, the perceived quality
for any G > 1 is higher than the quality of 1/G.

There are also strong variations among sources, as seen in
Fig. 2. This means that the selection of the sources also has
strong impact on the results. To test the effect of both factors
(gain G and source), a two-way ANOVA test was run (Table
II). The effect of G is statistically significant at 99.9% and
very strong (⌘2 = 0.5). The effect of the sources, as well
as the cross effect of source and gain, are also significant,
though weaker. Tukey’s Honest Significant Difference has
been computed for the sources (Fig. 3), to show which sources
behave significantly different from the others.

It is worth mentioning that parametric statistical analysis is
being used in the assumption that there is a gaussian random
process underneath the scoring. For robustness, Kruskal-Wallis
tests have been run to validate the significance of G and
source in the scores, and a post-hoc Dunn test has been run
to check the pairwise differences between sources. Results
are qualitatively equivalent to the ones presented. A similar
analysis, with equivalent results, has also been done for the
differential opinion scores (i.e. DMOS instead of MOS).

It is noticeable that the MOS value for the hidden reference
is quite below 5, meaning that some of the users voted that they
perceived some degradation even if there was none. Fig. 4 (a)
shows the distribution of scores for each G. There is a 27% of
false positives: misdetection of speed variation on its absence.
Similarly, scores of 5 for G = 0.67 (2.5%) or G = 1.5 (1.5%)
can be considered false negatives, as distortions of such level
are quite obvious.

The distribution of those kinds of “user errors” is hetero-
geneous among users, as seen in Fig. 4 (b). Some users can
be considered fully reliable (not making any of those errors)
while others raise up to a 80% of false positives in the hidden
reference. We can define a reliability score Average Error Rate

(AER) as

AER =
FalsePositives(%) + FalseNegatives(%)

2
(1)

For a first intuition on how this variability may affect
the results, we have computed MOS for the good and bad

sequences, meaning the seven sequences with higher and lower
average MOS respectively. For each of those, we have also
computed the MOS considering only the 20 most reliable users
(which had an AER of 10% or less). As seen in Fig. 4 (c), the
effect of user reliability is not negligible, but it is not critical
either: about 0.25 MOS points in the worst case. However, the
effect of content is higher: the deviation from average MOS
is about 0.5 in each direction, meaning a difference of 1.0
between good and bad sources.

IV. USER MODEL

To better understand the influence of user and source
variability on the final opinion score, we have developed a
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Relationship of AER vs Bias / Uncertainty
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Subset of subject / contents
Effect of content and subjects



© 2019 Nokia30

Comparison with prior art

TABLE III
COMPARISON OF MODELS

G MOS DMOS MLE DMLE [16] [17]

0.67 1.72± 0.07 2.07± 0.08 1.67 2.04 4.51 -
0.80 2.84± 0.09 3.16± 0.09 2.78 3.11 4.81 -
0.90 4.14± 0.07 4.40± 0.06 4.17 4.39 4.94 -
1.00 4.64± 0.05 5.00± 0.00 4.68 5.00 5.00 4.99
1.10 4.37± 0.06 4.62± 0.05 4.41 4.60 5.00 4.45
1.25 3.45± 0.09 3.75± 0.08 3.46 3.74 4.97 3.74
1.50 2.24± 0.08 2.59± 0.09 2.22 2.58 4.79 2.80

±CI means 95% Confidence Interval. CI for MLE and DMLE is 0.06 8G.

Xi ⇠ N (�i, �i) (7)
Yk ⇠ N (⇤k, ⇢k) (8)

To find the values of the model parameters, we have
used Maximum Likelihood Estimation (MLE) with the Belief
Propagation algorithm proposed in [21] and the following log-
likelihood function:

L(✓) = log (P )({ui,k,h}|✓) (9)
= log (P )({ui,k,h}|{'g}, {⇤k}, {⇢k}, {�i}, {�i})

(10)

=

X

i,k,g
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log
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2

⇢2k + �2
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(11)

The results for the MLE 'g are identical to the MOS,
within confidence intervals (see Table III). The rest of the
parameters are displayed in Fig. 5. Both �k and ⇤k follow
normal distributions, according to a D’Agostino and Pearson’s
test, with:

�k ⇠ N (�0.02, 0.40) (12)
⇤k ⇠ N (0.03, 0.38) (13)

V. DISCUSSION

A. Average quality

Table III shows the results of our tests, including confidence
intervals. DMLE is the maximum likelihood estimation of
the differential scores used to compute DMOS. The models
from Rainer and Timmerer [16] and Mu et al. [17] (for AMP
duration of 6 seconds) are also displayed.

Our results of DMOS/DMSE are consistent with [17], which
is the only work, to our knowledge, which has performed
subjective tests with realistic content for video streaming.
The model of [16] clearly overestimates the quality, as it has
been developed from a single animation content, with high
resilience to speed variations. Also, the assumption that 25%
variations are not perceptible and 50% variations are accept-
able [8] is too optimistic: a 10% of maximum variation is much
safer in terms of not being noticeable or, at least, annoying. It

Fig. 6. Scatter plots of ⇤k vs. TI (left) and SI (right), including linear fit
and coefficient of determination r2.

is also worth noting that even ±10% variations are statistically
significantly different from the reference. Additionally, most of
the cost models use symetrical degradations for speed decrease
and increase (e.g. [10], [13], [14]), neglecting the fact that the
former has higher impact in quality than the latter.

From our results, we can propose a simple piecewise linear
fit as cost model:

DMOS(G) =

(
�4.1 + 9.1G, for G  1

9.9� 4.9G, for G > 1
(14)

However, we have provided the ground truth values in Table
III so that it is easy for anyone to use smoother interpolators,
such as higher order polynomials, if required.

B. Impact of source

We have shown that there is significant variation in the
results from content to content. Differences in content re-
silience to AMP (⇤k) across sources (Fig. 5) are consistent
with the post-hoc analysis of the user scores (Fig.3), which,
together with the equality of MLE and MOS scores, supports
the validity of our user model parameter computation. Addi-
tionally, content ambiguity ⇢k is higher that the one reported
for subjective analysis of coding artifacts [21].

Unfortunately, there is no trivial relationship between source
influence and simple low-level features of the content. Fig. 6
shows the low correlation between the content resilience
⇤k and basic video statistics such as Temporal Information
and Spatial Information, as defined in [19]. Using motion
information as in [15] or [16] does not seem sufficient to
characterize the content.

Qualitatively, the best responses have been obtained for
animation sources (12, 14, 15) and action (13-15). Action

sequences are, on the other hand, more difficult to evaluate
(higher ⇢k). Rhythmic music (04, 05) is strongly affected by
AMP, unlike melodic music (06). Further research should be
done to describe all these properties quantitatively.

C. Impact of user

User bias and variability behaves similarly to other types
of subjective assessment, although the distribution of bias is
wider (� = 0.40) than what has been reported for evaluation of
video capture and compression artifacts (� = 0.34 [20]). This
may have relation with the fact that users are less familiar to

[16] Rainer & Timmerer, 2014
[17] Mu et al., 2017








