Updates on Maximum Likelihood Estimation (MLE) Methods for Subject Behavior Modeling

Zhi Li & Christos Bampis, *Netflix, USA* Lucjan Janowski, *AGH, Poland* Ioannis Katsavounidis, *Facebook, USA*

VQEG Meeting March 2020 3/10/2020

MLE Activities in SAM Study Group

- Motivation
 - Mission: to improve data quality coming from subjective experiment
 - Saw opportunity to improve data cleanup methods currently adopted in ITU-T/R recommendations via statistical methods (e.g. MLE)
- Progress since the last VQEG meeting
 - A comprehensive study with comparison to prior standards ITU-R BT.500 and ITU-T P.913
 - Bayesian Information Criterion (BIC) to validate model fitting with real-world data
 - Besides the original Newton-Raphson method, proposed an alternative solution based on projection, proven to be faster and more intuitive

Subjective Test

Credit: memegenerator.net

Raw opinion scores are noisy and unreliable

- Would MOS or DMOS be good enough?
- Corrective mechanisms
 - Subject outlier rejection
 - Subject bias removal

Prior Art: Subject Outlier Rejection (ITU-R BT.500)

(5)

For each test presentation, calculate the mean, \overline{u}_{jkr} , standard deviation, S_{jkr} , and kurtosis coefficient, β_{2jkr} , where β_{2jkr} is given by:

$$\beta_{2jkr} = \frac{m_4}{(m_2)^2}$$
 with $m_x = \frac{\sum_{i=1}^{N} (u_{ijkr} - \overline{u}_{ijkr})^x}{N}$

For each observer, i, find P_i and Q_i , i.e.:

for *j*, *k*, *r* = 1, 1, 1 to *J*, *K*, *R*

if $2 \leq \beta_{2jkr} \leq 4$, then:

 $if \ u_{ijkr} \ge \overline{u_{jkr}} + 2 \ S_{jkr} \qquad then \ P_i = P_i + 1 \\ if \ u_{ijkr} \le \overline{u_{jkr}} - 2 \ S_{jkr} \qquad then \ Q_i = Q_i + 1 \\ }$

else:

$$\begin{aligned} &\text{if } u_{ijkr} \geq \overline{u}_{jkr} + \sqrt{20} \ S_{jkr} & \text{then } P_i = P_i + 1 \\ &\text{if } u_{ijkr} \leq \overline{u}_{jkr} - \sqrt{20} \ S_{jkr} & \text{then } Q_i = Q_i + 1 \end{aligned}$$

$$\begin{aligned} &\text{If } & \frac{P_i + Q_i}{J \cdot K \cdot R} > 0.05 \quad \text{and} \quad \left| \frac{P_i - Q_i}{P_i + Q_i} \right| < 0.3 & \text{then reject observer } i \end{aligned}$$

with:

- N: number of observers
- J: number of test conditions including the reference
- K: number of test images or sequences
- R: number of repetitions
- L: number of test presentations (in most cases the number of presentations will be equal to $J \cdot K \cdot R$, however it is noted that some assessments may be conducted with unequal numbers of sequences for each test condition).

- Video by video, the algorithm counts the number of instances when a subject's opinion score deviates by a few sigmas
- Subject by subject, if the occurrences are more than a fraction, reject the subject

Limitations of BT.500-Style Subject Outlier Rejection

- All scores corresponding to rejected subjects are discarded an overkill
- Often only identifies a subset of outliers
 - In the example above, only subjects #26, #28, #29 were rejected
- Hard-coded parameters and heuristic steps lack interpretability

Prior Art: Subject Bias Removal (ITU-T P.913)

First, estimate the MOS for each PVS:

 $\mu_{\psi_j} = \frac{1}{I_j} \sum_{i=1}^{I_j} o_{ij}$

where:

- *o_{ij}* is the observed rating for subject *i* and PVS *j*;
- I_j is the number of subjects that rated PVS j;
- μ_{ψ_i} estimates the MOS for PVS *j*, given the source stimuli and subjects in the experiment.

Second, estimate subject bias:

$$\mu_{\Delta_i} = \sum_{j=1}^{J_i} \left(o_{ij} - \mu_{\psi_j} \right)$$

where:

 μ_{Δ_i} estimates the overall shift between the *i*th subject's scores and the true values (i.e., opinion bias)

 J_i is the number of PVSs rated by subject *i*.

Third, calculate the normalized ratings by removing subject bias from each rating:

$$r_{ij} = o_{ij} - \mu_{\Delta_i}$$

where:

 r_{ij} is the normalized rating for subject *i* and PVS *j*.

MOS and DMOS are then calculated normally. This normalization does not impact MOS:

$$\mu_{\Psi_j} = \frac{1}{I_j} \sum_{i=1}^{I_j} r_{ij} = \frac{1}{I_j} \sum_{i=1}^{I_j} o_{ij}$$

where:

 μ_{Ψ_i} estimates the MOS of PVS *j*.

- 1. Video by video, estimate MOS by averaging over subjects
- Subject by subject, estimate subject bias by comparing against MOS, and remove bias from opinion scores
- 3. Video by video, estimate MOS again based on bias-removed outlier-rejected opinion scores

Can we do better?

- Two most dominant effects of test subject inaccuracy:
 - Subject bias
 - Picky viewers tend to be biased toward lower scores
 - Not every subject has "golden eyes" their sensitivity to impairment varies
 - Subject inconsistency
 - Subjects may not rate consistently throughout a session
 - Outliers a special case with very large inconsistency
- Our proposal:
 - A simple yet effective model to account for subjective bias and inconsistency
 - Jointly solve the model parameters via maximum likelihood estimation (MLE)
 - Incorporate implicit "subject outlier rejection" and "subject bias removal" during model solving

A Simple Model*

- U_{ijr} Opinion score of subject *i*, stimulus *j* and repetition *r*
- ψ_i true quality of stimulus j
- Δ_i bias of subject *i*
- v_i inconsistency (std) of subject *i*
- \dot{X} i.i.d. normal random variables, $X \sim N(0, 1)$

*The model is a simplified version of [Li&Bampis'17] without considering the ambiguity of content. Compared to the original, the simplified model is more efficient and stable.

Solving the Model via MLE

- Given observations $\{U_{ijr}\}$
- The task is to solve for free parameters $\theta = (\{\psi_i\}, \{\Delta_i\}, \{v_i\})$
- Define log-likelihood function $l(\theta)$

 $l(heta) = \log P(U_{ijr}|\{\psi_j\},\{\Delta_i\},\{v_i\})$

• Numerically solve to maximize the log-likelihood function

 $\hat{ heta} = rg\max l(heta)$

- Proposed two numerical solutions
 - Newton-Raphson (NR) solution [Li&Bampis'17]
 - Projection-based (P) solution^{NEW!} (thanks to loannis!)
 - Faster and strongly intuitive
 - Similar to ITU-T P.913, but 1) iterative 2) the projection is weighted by (sample count)/(residue variance)

Sample Recovery Results

Validation Using Synthetic Data

- Synthetic data generation
 - Randomly generate parameters according to $\psi_i \sim U[1, 5], \Delta_i \sim N(0, 1), v_i \sim U[0, 1)$
 - Randomly generate observations according to parameters and model

Validation Using Synthetic Data (50% Missing Data)

- Synthetic data generation
 - Randomly generate parameters according to $\psi_i \sim U[1, 5], \Delta_i \sim N(0, 1), v_i \sim U[0, 1)$
 - Randomly generate observations according to parameters and model
 - Data missing probability 0.5

Validation Using Bayesian Information Criterion

- BIC is a criterion for model fitting, balancing between:
 - The degree of freedom (number of parameters)
 - The goodness of fit (log-likelihood function)

$$\mathrm{BIC} = rac{\log(n)| heta| - 2l(heta)}{n}$$

- $|\theta|$ the number of model parameters
- *n* the number of observations (i.e. raw opinion scores)
- $l(\theta)$ log-likelihood function

Bayesian Information Criterion (BIC)*

Dataset	MOS	BT.500 (SR_MOS)	P.913 (BR_SR_MOS)	Proposed (NR)	Proposed (P)
NFLX_dataset_public_raw_last4outliers	2.97	2.57	2.55	2.52	2.53
VQEGHD3_dataset_raw	2.75	2.74	2.39	2.30	2.31
HDTV_Phase_I_Experiment_1	2.45	2.46	2.38	2.20	2.22
HDTV_Phase_I_Experiment_2	2.72	2.72	2.52	2.32	2.33
HDTV_Phase_I_Experiment_3	2.72	2.71	2.37	2.29	2.29
HDTV_Phase_I_Experiment_4	2.96	2.96	2.51	2.27	2.27
HDTV_Phase_I_Experiment_5	2.77	2.77	2.47	2.33	2.33
HDTV_Phase_I_Experiment_6	2.51	2.49	2.32	2.16	2.16

*The model with the smallest BIC is preferred.

Bayesian Information Criterion (BIC)*

Dataset	MOS	BT.500 (SR_MOS)	P.913 (BR_SR_MOS)	Proposed (NR)	Proposed (P)
ITU-T_Supp_23_Experiment_1_BNR	2.91	2.91	2.35	2.31	2.31
MM2_1	2.80	2.78	2.83	2.74	2.75
MM2_2	3.89	3.89	3.52	3.13	3.13
MM2_3	2.48	2.47	2.45	2.41	2.42
MM2_4	2.74	2.73	2.62	2.47	2.47
MM2_5	2.90	2.82	2.67	2.64	2.64
MM2_6	2.81	2.74	2.74	2.72	2.74
MM2_7	2.73	2.72	2.76	2.67	2.71

*The model with the smallest BIC is preferred.

Bayesian Information Criterion (BIC)*

Dataset	MOS	BT.500 (SR_MOS)	P.913 (BR_SR_MOS)	Proposed (NR)	Proposed (P)
MM2_8	3.00	2.92	2.88	2.70	2.71
MM2_9	3.27	3.21	2.95	2.79	2.80
MM2_10	3.04	3.05	2.98	2.82	2.83
its4s2	3.63	3.63	2.96	2.59	2.59
its4s_AGH	3.14	3.04	2.76	2.63	2.63
its4s_NTIA	2.92	2.89	2.52	2.37	2.37

*The model with the smallest BIC is preferred.

Robustness Against Subjects Giving Random Scores

Random behavior: a subject's scores are shuffled among themselves

Y-axis: RMSE with respect to clean case

Robustness Against Increasing Corruption Probability

10 random subjects are corrupted, with corruption probability varying from 0.0 to 1.0 Y-axis: RMSE with respect to clean case

Conclusions

- Recommendations such as ITU-R BT.500 and ITU-T P.913 standardize the procedure to clean up raw scores from subjective experiments through subject outlier rejection (SR) and subject bias removal (BR)
- We introduce a simple model and the corresponding parameter estimation procedure that implicitly takes into account both SR and BR, with the following advantages:
 - Better model fitting
 - Better robustness in the presence of outlier subjects in terms of recovery accuracy
 - Auxiliary information on test subjects on their bias and consistency, providing guides on subject selection
 - The projection-based solution provides strong intuition
- We propose to update ITU-R BT.500 and ITU-T P.910/P.913 with the new methodology

Backup Slides

The projection solution is faster and more intuitive

video by video, estimate MOS by averaging over subjects
s_j = np.nanmean(x_ji, axis=1) # mean marginalized over i

subject by subject, estimate subject bias by comparing with MOS b_ji = x_ji - np.tile(s_j, (I, 1)).T b_i = np.nanmean(b_ji, axis=0) # mean marginalized over j

MAX_ITR = 1000 DELTA_THR = 1e-8 EPSILON = 1e-8

itr = 0
while True:

s_j_prev = s_j

calculate residue
r_ji = x_ji - np.tile(s_j, (I, 1)).T - np.tile(b_i, (J, 1))

video by video, estimate MOS by averaging over subjects, inversely weighted by residue variance
v_i = np.nanstd(r_ji, axis=0)
s_ji = x_ji - np.tile(b_i, (J, 1))
w_i = np.divide(cnt_i, v_i ** 2 + EPSILON)
s_j = weighed nanmean 2d(s_ji, weights=w i, axis=1) # mean marginalized over i

subject by subject, estimate subject bias by comparing with MOS, inversely weighted by residue variance
v_j = np.nanstd(r_ji, axis=1)
b_ji = x_ji - np.tile(s_j, (I, 1)).T
w_j = np.divide(cnt_j, v_j ** 2 + EPSILON)
b_i = weighed_nanmean_2d(b_ji, weights=w_j, axis=0) # mean marginalized over j

itr += 1

delta_s_j = linalg.norm(s_j_prev - s_j)

if itr >= MAX_ITR:
 break

Same as ITU-T P.913

Similar to ITU-T P.913, but weighted

The weight is proportional to the sample count, and inversely proportional to the residue variance

Robustness Against Subjects Giving "Flipped" Scores

Malicious behavior: scores are "flipped", for example, 1 for 5, 2 for 4, 2.5 for 3.5, and so on Y-axis: RMSE with respect to clean case

More Datasets

VQEGHD3_dataset_raw

Raw Opinion Scores (uii)

ITU-T_Supp_23_Experiment_1_BNR

Test Subjects (i)

Raw Opinion Scores (u_{ij})

Video Stimuli (j)

Test Subjects (i)

Raw Opinion Scores (uii)

Video Stimuli (j)

Raw Opinion Scores (u_{ij})

its4s2

(Ξ)									
jects	Raw Opinion Scores (<i>u_{ij}</i>)								
q	16 -	DESCRIPTION OF A DESCRIPT	Mr		SCALL PROPERTY OF ALL PROPERTY OF		NE STORAGE AND	CORNELIGUES INT A	
S	0	200	400	600	800	1000	1200	1400	
Test	Video Stimuli (j)								

