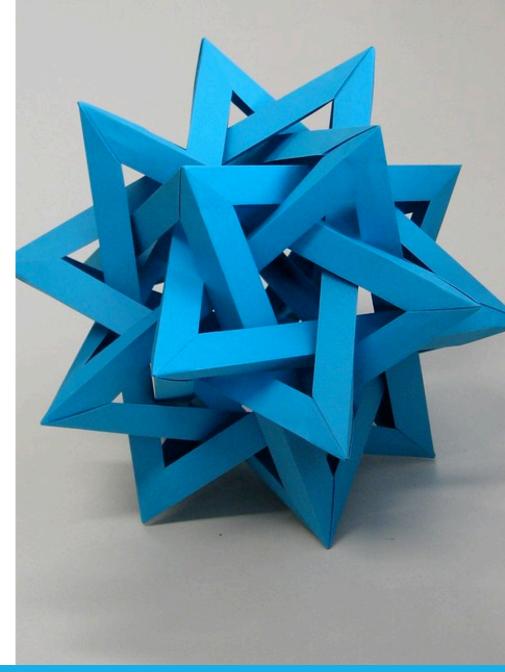


Artificial Intelligence based Observers for Media Quality Assessment

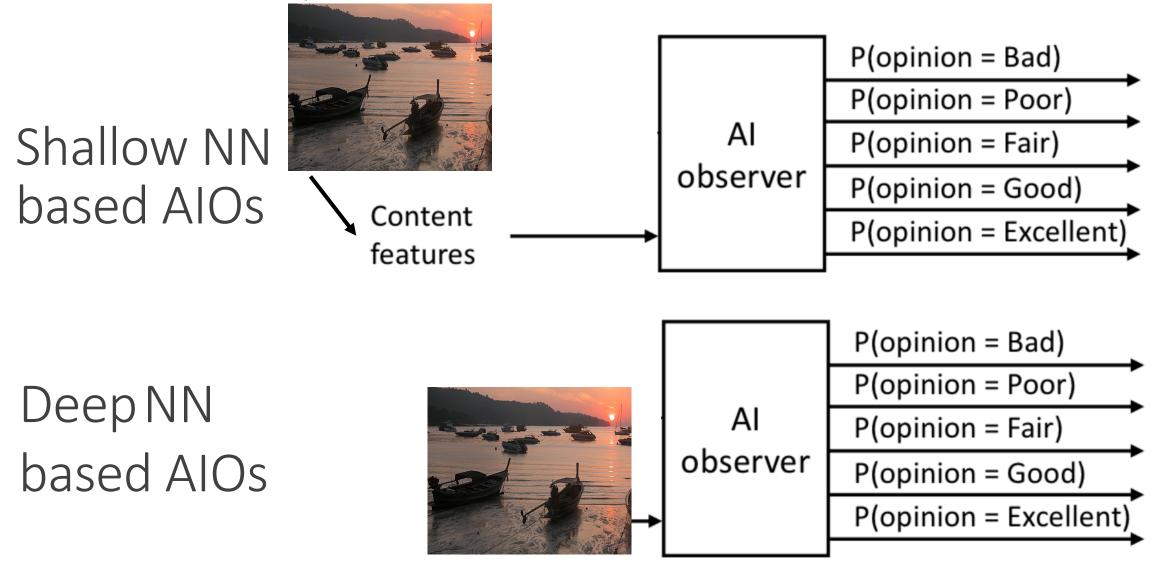
LOHIC FOTIO TIOTSOP



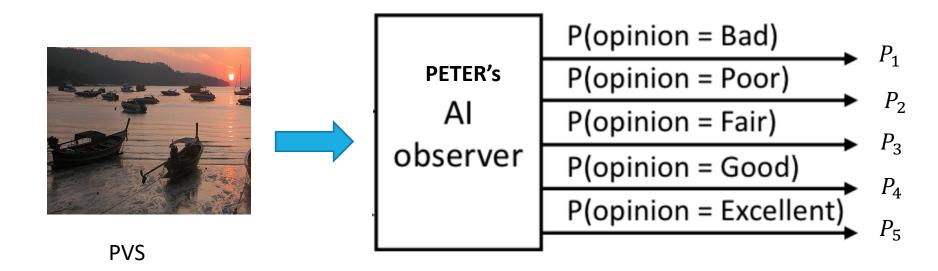
Artificial Intelligence based Observers (AIOs)

- Use Shallow/ Deep Neural network (NN) to learn single observers' quality perception
 - Train one NN for each observer
 Ground truth data: individual opinion score
- Each neural network is looked at as a virtual observer (AIO)
 - It accounts for the characteristics and expectation of the corresponding observer
 - The subject's inconsistency is modeled

AlOs: The Implementation



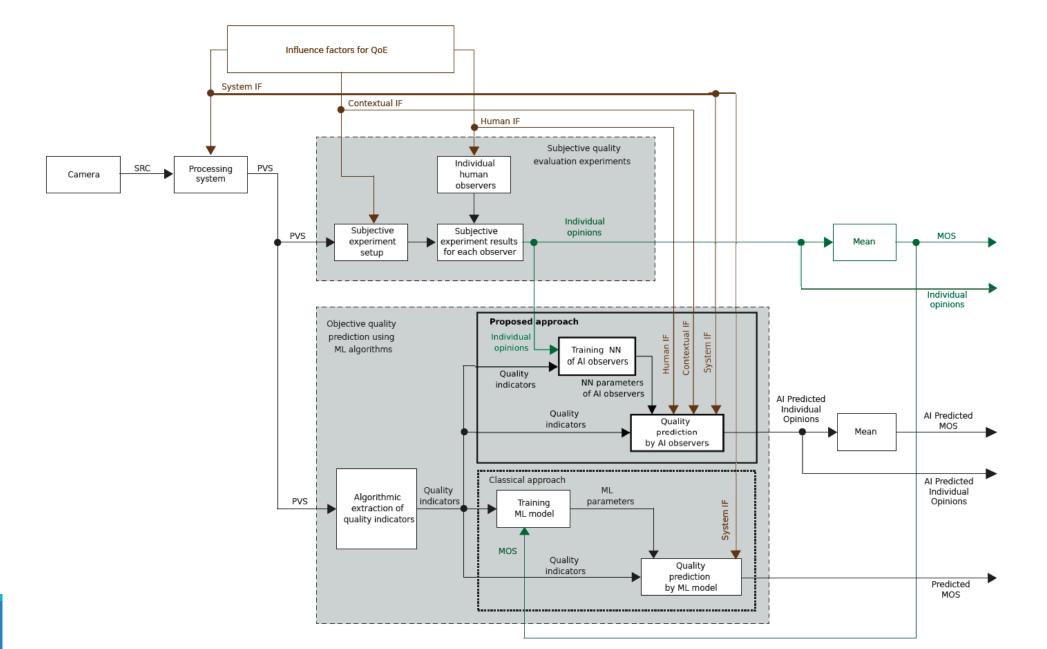
AlOs: A measure of subject inconsistency



Peter's inconsistency regarding the quality of the input PVS is predicted as:

$$\sigma_{PETER}^{pvs} = \sum_{i=1}^{5} i^2 \cdot p_i - (\sum_{i=1}^{5} i \cdot p_i)^2$$

AlOs vs Traditional media quality assessment approach



5

Shallow NN based AlOs: Results

The optimal set of features changes from an observer to another

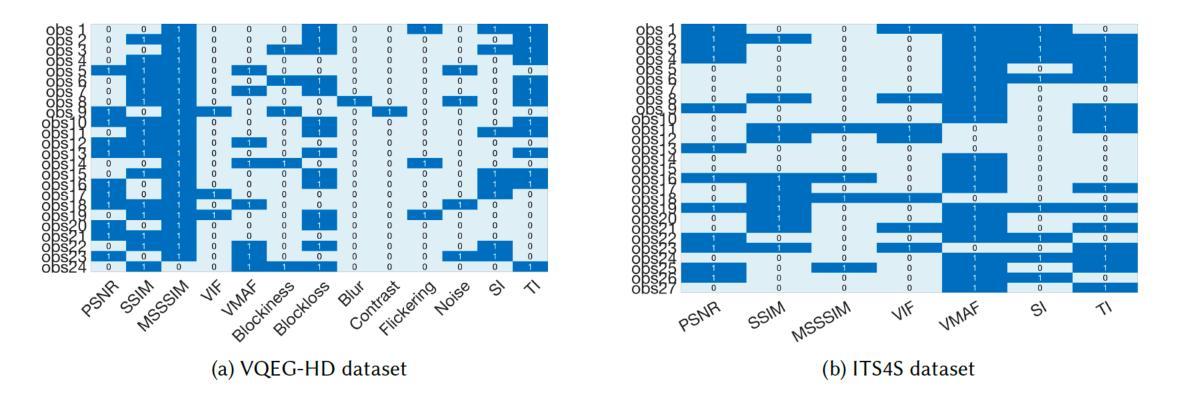
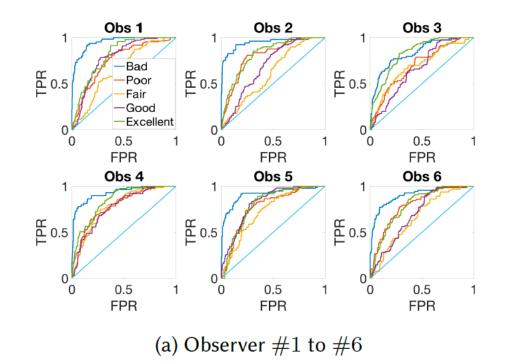


Fig. 3. Optimal set of the features to model each observer, where 1 indicates that the feature is selected, and 0 that it is not. The heterogeneity of the rows suggests that users rate the quality on the basis of different criteria.

Shallow NN based AlOs: Results

AlOs are more accurate on the boundaries of the quality scale just like actual observers

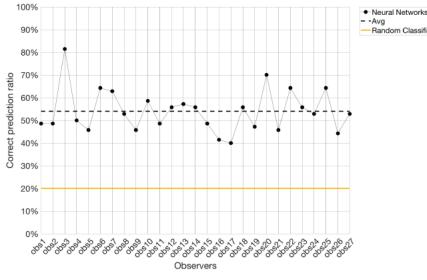




(b) Average AUC

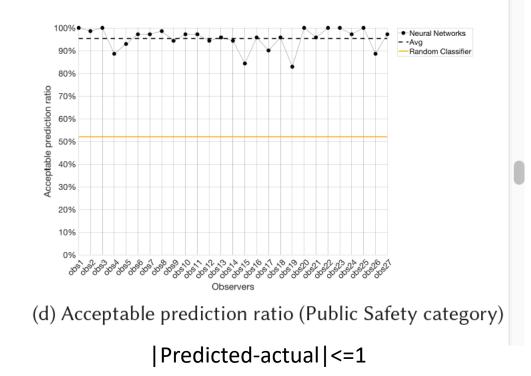
Shallows NN based AIOs: Results

- Actual observers vs their corresponding AIOs
- 27 AlOs trained using the ITS4S dataset
- The PVSs in the "Public Safety" category are used as test set



(c) Correct prediction ratio (Public Safety category)

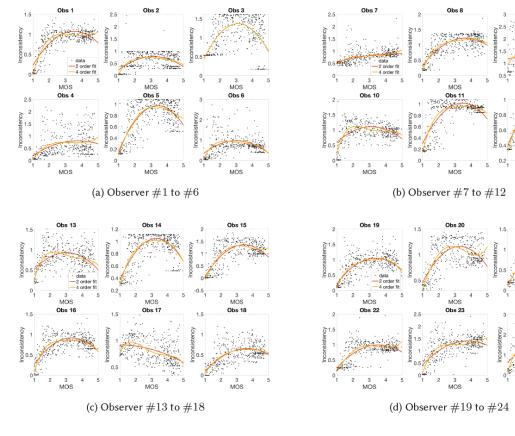
Predicted = actual

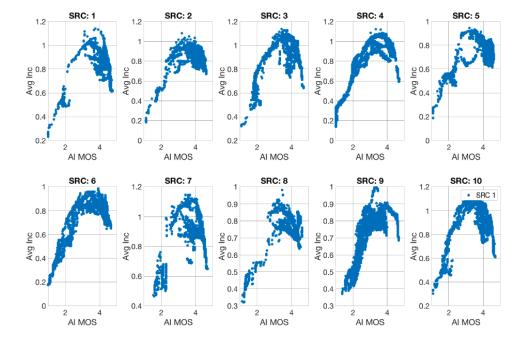


Shallow NN based AIOs: Results

Investigating the properties of the proposed inconsistency measure

3



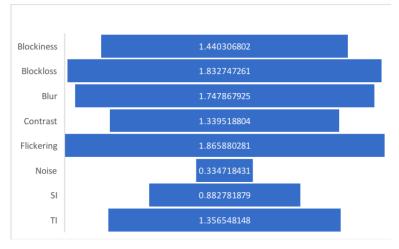


JEG-HYBRID DATASET

VQEG-HD For almost all observers, larger inconsistency is observed in the middle of the quality scale Independently from the source, the AOIs showed higher consistency when evaluating low quality PVSs

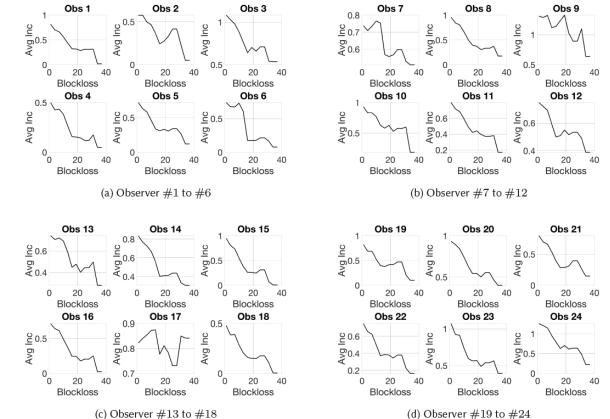
Shallow NN based AIOs: Results

Towards understanding peculiarities of the human vision system



(b) Average importance of features

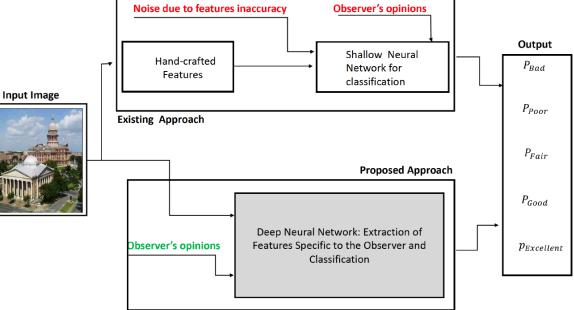
The importance of each feature for each observer is obtained using the neighborhood component analysis feature selection algorithm.



A significant loss of blocks leads to a distortion perceptible in a deterministic way by observers.

From Shallow NN to Deep NN based AlOs

- Hand-crafted features might not fully characterize the PVS
- There is the need to extract the optimal set of features that really model each subject's individual quality
 Perception



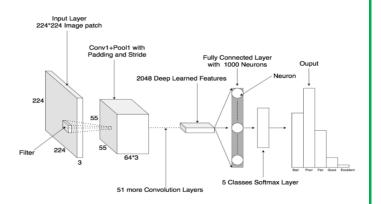
- Deep NNs solve both issues
- How to overcome the lack of large-scale training set which are needed to train Deep NNs based AIOs

Deep NN based AlOs: Training Process

Synthetic training set + Transfer learning

JPEG Quality parameter interval	Opinion score	Image label
[2, 10]	1	Bad
[11, 18]	2	Poor
[19, 25]	3	Fair
[26, 50]	4	Good
[51, 100]	5	Excellent

Synthetic data



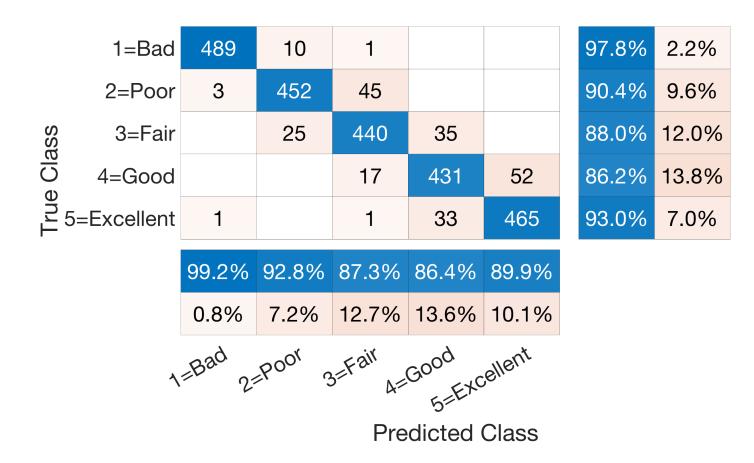
Image/VideoHand-crafted FeaturesAlice Ratings $f_1^{Video_1}, f_2^{Video_1}, \dots, f_m^{Video_r}$ Fair $f_1^{Video_2}, f_2^{Video_2}, \dots, f_m^{Video_2}$ Excellent......... $f_1^{Video_n}, f_2^{Video_n}, \dots, f_m^{Video_n}$ Bad

Features recognizing JPEG compression are updated to capture Alice's quality perception Alice's AIO

JPEGResNet50 + Transfer Learning

JPEGRestNet50

The JPEGResNet50 learned Image quality Assessment features



Performance of the JPEGResNet50 when used to classify 2500 JPEG distorted Images

- The JPEGResNet50 output five probabilities values, i.e. p_i i = 1, 2, ..., 5
- $MOS_{Res} = \sum_{i=1}^{5} i \cdot p_i$
- *MOS*_{AI} is the mean of AlOs opinions

DATASET	DISTORTION	BRISQUE	PSNR	SSIM	MOSres	MOSAI
CSIQ [47]	JPEG	0.86	0.89	0.94	0.95	0.91
MICT [48]	JPEG	0.90	0.64	0.64	0.88	0.75
SDIVL [49]	JPEG	0.56	0.73	0.77	0.82	0.43
TID2013 [50]	JPEG	0.81	0.91	0.92	0.94	0.84
VCL-FER [51]	JPEG	0.76	0.57	0.82	0.93	0.76
LIVE-IQA-r1 [45]	JPEG	0.94	0.85	0.96	0.96	0.92
LIVE-IQA-r2 [52]	JPEG	0.96 (T)	0.95	0.92	0.91	0.86
MICT [48]	JP2K	0.87	0.84	0.84	0.46	0.69
LIVE-IQA-r1 [45]	JP2K	0.91	0.85	0.88	0.59	0.83
LIVE-MD-ph1 [13]	BLUR + JPEG	0.12	0.37	0.36	0.25	0.83 (T)
LIVE-MD-ph2 [13]	BLUR + NOISE	0.01	0.53	0.42	0.02	0.52

DATASET	DISTORTION	BRISQUE	PSNR	SSIM	MOS _{res}	MOS _{AI}
CSIQ	JPEG	0.85	0.90	0.93	0.93	0.87
MICT	JPEG	0.92	0.60	0.66	0.87	0.75
SDIVL	JPEG	0.54	0.76	0.82	0.71	0.29
TID2013	JPEG	0.83	0.93	0.90	0.92	0.83
VCL-FER	JPEG	0.79	0.58	0.82	0.94	0.74
LIVE-IQA-r1	JPEG	0.92	0.93	0.94	0.92	0.85
LIVE-IQA-r2	JPEG	0.97 (T)	0.94	0.95	0.90	0.86
MICT	JP2K	0.90	0.88	0.88	0.52	0.67
LIVE-IQA-r1	JP2K	0.92	0.92	0.91	0.69	0.78
LIVE-MD-ph1	BLUR+JPEG	0.12	0.37	0.36	0.27	0.83 (T)
LIVE-MD-ph2	BLUR+NOISE	0.16	0.52	0.37	0.01	0.53

PLCC

SROCC

DATASET	DISTORTION	BRISQUE	PSNR	SSIM	MOSres	MOS _{AI}
CSIQ	JPEG	0.63	0.56	0.43	0.37	0.51
MICT	JPEG	0.51	0.89	0.90	0.55	0.76
SDIVL	JPEG	0.77	0.64	0.60	0.54	0.85
TID2013	JPEG	0.40	0.28	0.26	0.24	0.38
VCL-FER	JPEG	0.56	0.70	0.49	0.31	0.56
LIVE-IQA-r1	JPEG	0.33	0.49	0.25	0.26	0.35
LIVE-IQA-r2	JPEG	0.26 (T)	0.31	0.38	0.42	0.50
MICT	JP2K	0.60	0.64	0.65	1.06	0.87
LIVE-IQA-r1	JP2K	0.35	0.45	0.41	0.69	0.47
LIVE-MD-ph1	BLUR+JPEG	0.49	0.45	0.46	0.47	0.27 (T)
LIVE-MD-ph2	BLUR+NOISE	0.54	0.46	0.49	0.54	0.46

RMSE

TABLE V

Results of the statistical test performed for comparing the PLCC values provided by the different metrics on all the datasets. Considering the datasets ordered as they appear in Table II, the K-th digit of the binary sequence in the i-th row and j-th column is 1 if and only if on the K-th dataset, the i-th metric performed significantly better than the j-th one with 95% of confidence. For instance, on the TID2013 dataset (k=4) the MOS_{res} performed significantly better than the BRISQUE.

	BRISQUE	PSNR	SSIM	MOS _{res}	MOSAI	Total
BRISQUE		01001100100	0100010000	0000011100	01000011100	13
PSNR	00110000011		0000010000	0000011101	00110011000	13
SSIM	10110100011	10001100000		0000001101	10110111100	19
MOS _{res}	10111100000	1 1 1 0 1 1 0 0 0 0 0	01001000000		1111110000	18
MOSAI	1000000011	00001100010	00000000010	0000001111		10

- Deep NNs based AIOs vs Actual ones
- Is the SROCC between an AIO and an actual observer similar to that between two actual observers?

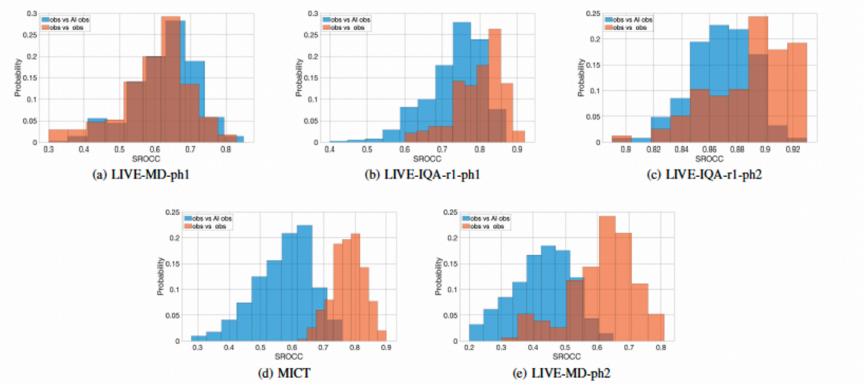
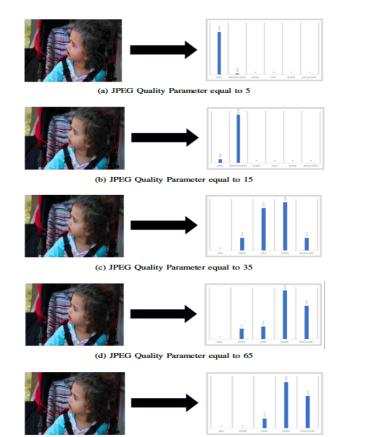
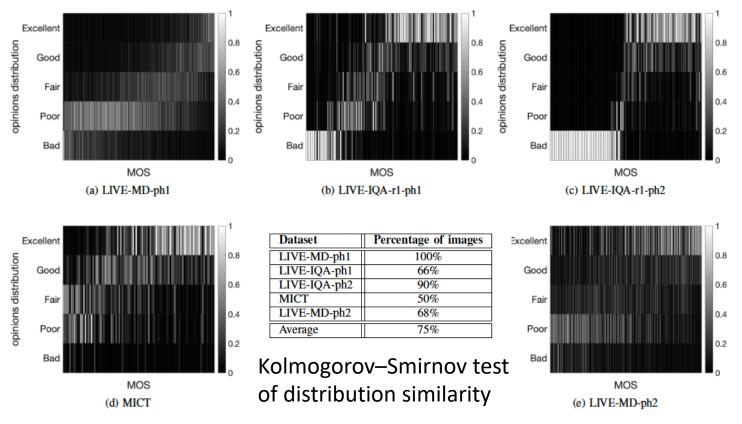


Fig: Comparing the correlation values observed between the actual observers and the ones of the actual observers and AIOs. The higher is the overlap, the better it is.

AlOs enable the estimation of the user's opinion distribution



Performance of the deep NN based AlOs on 5 images obtained by progressively compressing a source image



The predicted distribution of the user opinions for each image as a function of its MOS. Note that the mode of the distribution tends to increase as the MOS increases. Furthermore, as expected, the distribution is concentrated around the value of the mode in most of the cases.

Publications

- L. Fotio Tiotsop, T. Mizdos, M. Uhrina, P. Pocta, M. Barkowsky, E. Masala, "Predicting Single Observer's Votes from Objective Measures using Neural Networks". In Proceedings of Human Vision and Electronic imaging (HVEI) Conference 2020.
- L. Fotio Tiotsop, T. Mizdos, M. Barkowsky, P. Pocta, A. Servetti, E. Masala, "Mimicking individual media quality perception with neural network based artificial observers". Submitted to the ACM Transactions on Multimedia computing communications and applications journal.
- L. Fotio Tiotsop, A. Servetti, T. Mizdos, M. Uhrina, P. Pocta, G.Van Wallendael, M. Barkowsky, E. Masala, "Deep Neural Networks based Artificial Observers for No Reference Image Quality Assessment". Submitted to the IEEE Transactions on Image Processing journal.

Thank you for your attention