A Probabilistic Graphical Model for Analyzing the Subjective Visual Quality Assessment Data from Crowdsourcing

Jing Li, Alibaba Group, China <u>Suiyi Ling</u>, Capacites, France Zhi Li, Netflix, USA

Junle Wang, Tencent, China

Patrick Le Callet, University of Nantes, France

Visual Quality Assessment

Subjective Quality: ratings from observers using scale (ACR, DSIS, SSQE, DSCQS, SAMVIQ ...) Averaged across observers => A.K.A MOS (Mean Opinion Score)

Objective Quality: predict a quality score

Deep Learning needs big data

- Traditional way to get quality data: Everything is in ITU standard

 well control
 - time consuming
- Solution: Crowdsourcing

ITU standard test room

A model to recover ground truth

- Regarding subjective quality data
 - The distribution is not gaussian

But an ordinal categorical distribution

- Regarding annotator's behavior
 - he/she does not always give wrong/random answer

Should count on probability of abnormal behavior

- Ground truth is an ordinal categorical distribution
 - For example, in ACR test, N = 5

 $Cat(y|\theta_{\mathbf{e}}) = \prod_{n=1}^{N} \theta_{e,n}^{[y=n]}$

 $\theta_{e,n}$ the probability of obtaining label *n* in one trial for object *e*

$$\sum_{n=1}^{N} \theta_{e,n} = 1$$

[y = n] equals to 1 if y = n

• Annotators behavior classification

- For an annotator *s*
- Given an quality assessment task on object (image/video) e
- Using 1-5 Likert scale $r_{e,s}$ is the provided label for e by annotator s

Using latent variable $z_{e,s}$ to control whether or not the annotator is in abnormal behavior

 θ_e , ϵ_s and π_s are parameters, $y_{e,s}$, $x_{e,s}$ and $z_{e,s}$ are latent variables, $r_{e,s}$ is the provided label by annotator *s*.

$$p(Z|\epsilon) = \prod_{e,s \in A} B(z_{e,s}|\epsilon_s)$$

$$p(X|\pi) = \prod_{e,s \in A} D(x_{e,s}|\pi_s)$$

$$p(Y|\theta) = \prod_{e,s \in A} Cat(y_{e,s}|\theta_e)$$

$$p(R|X, Y, Z) = \prod_{e,s \in A} p(x_{e,s})^{[z_{e,s}=0]} p(y_{e,s})^{[z_{e,s}=1]},$$

- For an annotator *s*
- Given an quality assessment task on object (image/video) e
- Using 1-5 Likert scale

Using latent variable $z_{e,s}$ to control whether or not the annotator is in abnormal behavior

$$\theta_e$$
 , ϵ_e , and π_e are parameters, $y_{e,s}, x_{e,s}$ and $z_{e,s}$ are latent variables

$$p(Z|\epsilon) = \prod_{e,s \in A} B(z_{e,s}|\epsilon_s)$$

$$p(X|\pi) = \prod_{e,s \in A} D(x_{e,s}|\pi_s)$$

$$p(Y|\theta) = \prod_{e,s \in A} Cat(y_{e,s}|\theta_e)$$

$$p(R|X, Y, Z) = \prod_{e,s \in A} p(x_{e,s})^{[z_{e,s}=0]} p(y_{e,s})^{[z_{e,s}=1]},$$

- For an annotator *s*
- Given an quality assessment task on object (image/video) e
- Using 1-5 Likert scale

Using latent variable $Z_{e,s}$ to control whether or not the annotator is in abnormal behavior

$$\theta_e$$
 , ϵ_e , and π_e are parameters, $y_{e,s}, x_{e,s}$ and $z_{e,s}$ are latent variables

$$p(Z|\epsilon) = \prod_{e,s \in A} B(z_{e,s}|\epsilon_s)$$

$$p(X|\pi) = \prod_{e,s \in A} D(x_{e,s}|\pi_s)$$

$$p(Y|\theta) = \prod_{e,s \in A} Cat(y_{e,s}|\theta_e)$$

$$p(R|X, Y, Z) = \prod_{e,s \in A} p(x_{e,s})^{[z_{e,s}=0]} p(y_{e,s})^{[z_{e,s}=1]},$$

- For an annotator *s*
- Given an quality assessment task on object (image/video) e
- Using 1-5 Likert scale

Using latent variable $Z_{e,s}$ to control whether or not the annotator is in abnormal behavior

$$\theta_e$$
 , ϵ_e , and π_e are parameters, $y_{e,s}, x_{e,s}$ and $z_{e,s}$ are latent variables

$$p(Z|\epsilon) = \prod_{e,s \in A} B(z_{e,s}|\epsilon_s)$$

$$p(X|\pi) = \prod_{e,s \in A} D(x_{e,s}|\pi_s)$$

$$p(Y|\theta) = \prod_{e,s \in A} Cat(y_{e,s}|\theta_e)$$

$$p(R|X, Y, Z) = \prod_{e,s \in A} p(x_{e,s})^{[z_{e,s}=0]} p(y_{e,s})^{[z_{e,s}=1]},$$

- For an annotator *s*
- Given an quality assessment task on object (image/video) e
- Using 1-5 Likert scale

Using latent variable $z_{e,s}$ to control whether or not the annotator is in abnormal behavior

 θ_e , ϵ_s and π_s are parameters, $y_{e,s}$, $x_{e,s}$ and $z_{e,s}$ are latent variables, $r_{e,s}$ is the provided label by annotator *s*.

$$p(Z|\epsilon) = \prod_{e,s \in A} B(z_{e,s}|\epsilon_s)$$

the complete
conditional
density

$$p(X|\pi) = \prod_{e,s \in A} D(x_{e,s}|\pi_s)$$

$$p(Y|\theta) = \prod_{e,s \in A} Cat(y_{e,s}|\theta_e)$$

$$p(R|X, Y, Z) = \prod_{e,s \in A} p(x_{e,s})^{[z_{e,s}=0]} p(y_{e,s})^{[z_{e,s}=1]},$$

$$p(R|Y, X, Z, \pi, \epsilon, \theta) = \sum_{Z} p(R|X, Y, Z)p(Z|\epsilon)$$

$$= p(Z = 1|\epsilon)p(Y|\theta)$$

$$+ p(Z = 0|\epsilon)p(X|\pi)$$

$$= \prod_{e,s \in A} [\epsilon_s(\prod_{n=1}^{N} \theta_{e,n}^{[r_{e,s}=n]})]$$

$$+ (1 - \epsilon_s)(\prod_{n=1}^{N} \pi_{s,n}^{[r_{e,s}=n]})]$$
Subject to:

$$1 \ge \theta_{e,n} \ge 0, \sum_{n=1}^{N} \theta_{e,n} = 1$$

$$1 \ge \pi_{s,n} \ge 0, \sum_{n=1}^{N} \pi_{s,n} = 1$$

$$r_{e,s} \text{ is the provided label by annotator s}$$

$$r_{e,s} \text{ is the provided label by annotator s}$$

$$r_{e,s} \text{ is the provided label by annotator s}$$

$$r_{e,s} \text{ is the provided label by annotator s}$$

$$r_{e,s} \text{ is the provided label by annotator s}$$

$$r_{e,s} \text{ is the provided label by annotator s}$$

$$r_{e,s} \text{ is the provided label by annotator s}$$

$$r_{e,s} \text{ is the provided label by annotator s}$$

$$r_{e,s} \text{ is the provided label by annotator s}$$

- Random selection of the spammer
- Simulate mixed abnormal behavior
- Replace the real data by error data
- Simulate 100 times

Experimental results

1) The influence of spammer ratio on recovered ground truth

- Random sampling annotators
- Simulate mixed abnormal behavior
- Fix 'mixed' behavior = 20%
- Replace the real data by error data

Experimental Results

2) Influence of annotator number on inferring the ground truth

Experiment on real crowdsourcing data

- UPGC crowdsourcing data
 - -1074 UPGC video sequences
 - -181 annotators
 - -23962 collected labels
 - -22 annotators/video

MovieLens 20M review data

- 174 movies
- 69 annotators
- 2833 ratings
- 16 annotators/movie

GT: 5662 movies labeled by 15147 annotators

Model	PLCC ↑	ROCC ↑	RMSE \downarrow
D&S [6]	0.4073	0.4957	1.2287
GLAD [33]	0.5347	0.6029	0.6361
Bin [25]	0.7122	0.7166	0.5849
REML[26]	0.7066	0.7282	0.4292
MLE [18]	0.8369	0.8219	0.2483
Proposed	0.8620	0.8420	0.2228

Detected abnormal behavior

• In UPGC crowdsourcing video database

Conclusion

- A probabilistic graphic model is proposed to recover ground truth and detect abnormal behavior
- The ground truth of the visual quality is a distribution
 - Not Gaussian
 - But an ordinal categorical distribution \rightarrow more general
- Each annotator has a probability to make a mistake
 - If this probability smaller than $0.5 \rightarrow$ spammer
 - Data is expensive, using model to denoise
- The proposed model outperforms the other SOTA methods.