

Perceptual Quality Assessment of Internet Videos

Jiahua Xu, Alibaba Group, USTC

Jing Li*, Alibaba Group

XingGuang Zhou, Alibaba Group Wei Zhou, USTC Baichao Wang, Alibaba Group Zhibo Chen, USTC

Internet Videos

UGC

- Captured, edited, uploaded by users
- Diverse contents and uncontrolled quality

PGC

- Professional device and photographer
- Well-designed contents and guaranteed quality

OGC

• e.g. Hollywood production

User generated content (UGC) videos

Professionally generated content (PGC) videos

Occupationally generated content (OGC) videos

Diverse contents in one website

A general quality assessment solution
Input: any videos
Output: perceptual quality score

• No reference in most cases

Input: only the videos under test Output: perceptual quality score for this video

Challenges

• Data

- How to collect the subjective score ightarrow reliable label
- How many data should we collect \rightarrow for DL model
- How to run the subjective test with limited budget \rightarrow reality
- How to remove outliers when we have no ground truth \rightarrow reliable label

Model

How to deal with the human perception in such a complicated case? Universal

Database: Youku-V1K

Data sampling strategy

- Full coverage
- Uniform
- Small&Valid

- Randomly sampling 10K videos from Youku

- Uniformly sampling 3K videos from above by content category and resolution

- Calculating quality factors, including spatial activity, temporal activity, blockiness, blurriness, brightness, contrast, flickering, colorfulness, etc.

YOUKU

- Sampling videos to make each factor as uniformly distributed as possible

Database: Youku-V1K

Content category distribution

Database: Youku-V1K

1072 videos 540p – 1080p 13 content categories UGC + PGC + OGC

	Databases	Source	<pre># of videos(Ref/Dis)</pre>	Video length	Resolution	Distortion type	Subjective environment
With high-quality reference	IRCCyN/IVC 1080i [35] LIVE [40] CSIQ [45]	High-quality reference High-quality reference High-quality reference	24/168 10/150 12/216	9-12s 8-10s 10s	1080p 768x432 832x480	synthetic synthetic synthetic	Laboratory Laboratory Laboratory
Without high-quality reference	CVD2014 [34] LIVE-Qualcomm [12] LIVE-VQC [42]	Captured Captured Captured	-/234 -/208 -/585	10-25s 15s 10s	480p, 720p 1080p 480p-1080p	authentic authentic authentic	Laboratory Laboratory Crowdsourcing
	KoNViD-1k [17] YouTube-UGC [44]	Flicker YouTube	-/1200 -/1380	8s 20s	540p 360p-2160p	authentic (UGC) authentic (UGC)	Crowdsourcing Crowdsourcing
	Youku-V1K	Youku	-/1072	10s	1080p	authentic (UGC+PGC+OGC)	Crowdsourcing

Subjective experiment

- Absolute Categorical Rating (ACR) method
- Crowdsourcing
 - 300+ naïve observers
 - Aged from 18-49 years old
 - Approximately 100 votings /observer, avoiding visual fatigue
 - 22000+ labeling
 - 15+ labels/video
 - Videos are randomly presented
 - Viewed on PC, viewing distance uncontrolled

Data Cleaning

• Adopted a probabilistic graphic Model^[1] for data cleaning

[1]J Li, S Ling, J Wang, Z Li, and P Callet. *A probabilistic graphical model for analyzing the subjective visual quality assessment data from crowdsourcing.* In Proceedings of ACM MM, 2020.

The proposed obje

GCN To capture the spatial relations

de

The proposed objective qualit to enhance the features for

Attention: discriminative Channels and salient regions

The proposed objective quality model

The proposed obje

Bi-directional LSTM: to capture long-term interframes relations, i.e., quality

de

Experimental results:

	Video databases						
Quality metrics	SROCC	Youku-V1K	KoNViD-1k	LIVE-VQC	YouTube-UGC		
	NIQE	0.5782(±0.0112)	0.5417(±0.0347)	0.5957(±0.0571)	0.2379(±0.0487)		
	ILNIQE	0.4427(±0.0121)	$0.5264(\pm 0.0294)$	0.5037(±0.0712)	0.2918(±0.0502)		
	VIIDEO	0.4210(±0.0124)	0.2988(±0.0561)	0.0332(±0.0856)	0.0580(±0.0536)		
	BRISQUE	0.7804(±0.0268)	0.6567(±0.0351)	0.5929(±0.0681)	0.3820(±0.0519)		
	GM-LOG	0.7930(±0.0241)	0.6578(±0.0324)	0.5881(±0.0683)	0.3678(±0.0589)		
	HIGRADE	$0.8486(\pm 0.0170)$	0.7206(±0.0302)	$0.6103(\pm 0.0680)$	$0.7376(\pm 0.0338)$		
	FRIQUEE	0.8512(±0.0182)	$0.7472(\pm 0.0263)$	$0.6579(\pm 0.0536)$	0.7652(±0.0301)		
	CORINA	$0.8464(\pm 0.0176)$	$0.7169(\pm 0.0245)$	$0.6719(\pm 0.0473)$	0.5972(±0.0413)		
	HOSA	$0.8480(\pm 0.0144)$	$0.7654(\pm 0.0224)$	0.6873(±0.0462)	0.6025(±0.0344)		
	VGG-19	$0.8647(\pm 0.0180)$	0.7741(±0.0288)	$0.6568(\pm 0.0536)$	0.7025(±0.0281)		
	ResNet-50	0.8791(±0.0157)	0.8018(±0.0255)	0.6636(±0.0511)	0.7183(±0.0281)		
	V-BLIINDS	$\overline{0.7822(\pm 0.0245)}$	$\overline{0.7101(\pm 0.0314)}$	0.6939(±0.0502)	0.5590(±0.0496)		
	TLVQM	0.7832(±0.0237)	0.7729(±0.0242)	$0.7988(\pm 0.0365)$	$0.6693(\pm 0.0306)$		
	VIDEVAL	0.8294(±0.0183)	0.7832(±0.0216)	0.7522(±0.0390)	0.7787(±0.0254)		
	STDAM	$0.9141(\pm 0.0089)$	$0.8448(\pm 0.0189)$	0.7931(±0.0340)	$0.8341(\pm 0.0306)$		

Experimental results:

	Video databases						
Quality metrics	PLCC	Youku-V1K	KoNViD-1k	LIVE-VQC	YouTube-UGC		
	NIQE	0.6046(±0.0097)	0.5530(±0.0337)	0.6286(±0.0512)	0.2776(±0.0431)		
	ILNIQE	$0.4685(\pm 0.0110)$	$0.5400(\pm 0.0337)$	0.5437(±0.0717)	0.3302(±0.0579)		
	VIIDEO	$0.4148(\pm 0.0128)$	0.3002(±0.0539)	0.2146(±0.0903)	$0.1534(\pm 0.0498)$		
	BRISQUE	$0.7801(\pm 0.0278)$	$0.6576(\pm 0.0342)$	0.6380(±0.0632)	0.3952(±0.0486)		
	GM-LOG	$0.7958(\pm 0.0545)$	$0.6636(\pm 0.0315)$	0.6212(±0.0636)	0.3920(±0.0594)		
	HIGRADE	$0.8507(\pm 0.0166)$	$0.7269(\pm 0.0287)$	0.6332(±0.0652)	$0.7216(\pm 0.0334)$		
	FRIQUEE	$0.8508(\pm 0.0185)$	$0.7482(\pm 0.0257)$	$0.7000(\pm 0.0587)$	07571(±0.0324)		
	CORINA	$0.8479(\pm 0.0188)$	$0.7135(\pm 0.0236)$	$0.7183(\pm 0.0420)$	$0.6057(\pm 0.0399)$		
	HOSA	$0.8485(\pm 0.0144)$	$0.7664(\pm 0.0207)$	$0.7414(\pm 0.0410)$	$0.6047(\pm 0.0347)$		
	VGG-19	$0.8704(\pm 0.0156)$	$0.7845(\pm 0.0246)$	$0.7160(\pm 0.0481)$	0.6997(±0.0281)		
	ResNet-50	$0.8821(\pm 0.0154)$	$0.8104(\pm 0.0229)$	$0.7205(\pm 0.0434)$	$0.7097(\pm 0.0276)$		
	V-BLIINDS	$0.7844(\pm 0.0249)$	$0.7037(\pm 0.0301)$	$0.7178(\pm 0.0500)$	$0.5551(\pm 0.0465)$		
	TLVQM	$0.7849(\pm 0.0243)$	$0.7688(\pm 0.0238)$	$0.8025(\pm 0.0360)$	$0.6590(\pm 0.0302)$		
	VIDEVAL	$0.8304(\pm 0.0187)$	$0.7803(\pm 0.0233)$	$0.7514(\pm 0.0420)$	0.7733(±0.0257)		
	STDAM	0.9120(±0.0074)	$0.8415(\pm 0.0173)$	$0.8204(\pm 0.0342)$	$0.8297(\pm 0.0279)$		

Applications

The proposed model has been widely used at Youku

- Quality score as a ranking factor in recommendation systems
- Low-quality filtering in searching systems
- Low-quality filtering when users uploading their videos
- Quality enhancement indicators

ACM multimedia

Thank you!

