
TITR
E

INSTITUT
D’ÉLECTRONI
QUE ET DE
TÉLÉCOMMU
NICATIONS DE
RENNES

Model Observers for the Objective Quality
Assessment of Medical Images

QAH Working Group

Lu Zhang
Associate professor
INSA Rennes
IETR-VAADER team
FRANCE
lu.ge@insa-rennes.fr



TITR
E

INSTITUT
D’ÉLECTRONI
QUE ET DE
TÉLÉCOMMU
NICATIONS DE
RENNES

Images of interest

• Still radiographic images acquired from the acquisition 
systems of varied imaging modalities:
– CT (Computed tomography),
– MRI (Magnetic Resonance Imaging), 
– ultrasound,
– PET (Positron Emission Tomography),
– SPECT (Single Photon Emission Computed Tomography)...

• End-Users: radiologist, physician, practitioner…
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Why do we assess medical image quality ?
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Diagnostic task-based assessment

4

Medical image quality ?  
A diagnostic accuracy & efficacy matter

Task-based approach

There is a need for good measurements of medical image quality. 

MSE
PSNR

SSIM
…

Image quality metrics

Diagnosis Decision Making 
(+ clinical information of the patient)

Detection
task

Localization
task

Characterization
task
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Task performance 1

Task performance 2

Task-based approach using human observers

• Time-consuming, expensive efforts

• Variance exists between and within 
radiologists’ responses 
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Observer
(MO)

Task performance 1

Task performance 2

• Much easier, faster and cheaper 

to carry out

• No variance within its responses  

Task-based approach using model observers
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1. Model observer tasks:
(1) Detection of one single signal on 2D images
(2) Detection-Localization of one single signal on 2D images
(3) Detection-Localization of multiple signals on 2D images
(4) Detection-Localization of multiple signals on 3D images

2. Validation & performance
(1) Figure of merit: ROC & Variants of ROC
(2) Experiments using human observers

3. MO approximation using ANN

4. Conclusions and future works

Agenda
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q Detection of a signal (x) on a noisy background (b):

3.1. GENERAL CONSIDERATIONS 27

Part III).
Finally, multi-slice MOs proposed in the literature are presented, considering the trend to

volumetric images in medical domain. Three categories of the existing multi-slice MOs are
single-slice CHO (ssCHO), volumetric CHO (vCHO) and multi-slice CHO (msCHO). The ssCHO
does not incorporate information in the z direction, and only considers the central slice; the vCHO
may have more calculation burden when the image size increases; the msCHO firstly obtains
a score for each slice in x-y plane then weights the score in the z direction to result in a scalar.
Note that the existing multi-slice MOs only process the SKE task, and we will propose a novel
multi-slice numerical observer for SKS task (cf. Chapter 9 in Part III).

3.1 General considerations

In general, model observer (MO) is designed to detect a signal on a noisy background. The
problem can be seen as the validation of one of the two following exclusive hypotheses:

H0 : signal-absent

H1 : signal-present (3.1)

Normally the amount of noise is assumed to be so small that it does not disturb the statistical
properties of the background.

The two hypotheses can be formulated as follows:

Hh : g = hx + b, h = 0, 1 (3.2)

where g is an M ◊ 1 column vector representing the digital image under consideration consisting
of M pixels of the image; and the absence or presence of the signal is controlled by the binary
variable h. Hereafter, all 2D data (image, signal or background) will be represented by a column
vector through vertical concatenation.

3.1.1 Background models

In medical image quality assessment domain, the noisy background, denoted as b in Eq.(3.2),
is the modeling of clinical image without the presence of signal. The background complexity thus
depends on the considered application.

There are mainly four categories of background models used in the literature:
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: M× 1 column vector (through vertical concatenation)

q In general, MO computes a scalar test statistic λ(g)
via a discriminant function of the image and they
differ by their discriminant functions.

Decision rule:

3.2. BASICS OF MO 31
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Figure 3.2: Examples of one elliptical signal (with ‡ = 3,
Ô

b = 2 and ◊ = fi/4) added at the
center of the four noisy backgrounds presented in Figure 3.1.

3.2 Basics of MO

In case of the detection of a signal, every MO computes a scalar test statistic ⁄(g) via a
discriminant function of the image and they differ by their discriminant functions. Then a decision
is made in favor of hypothesis H1 if the test statistic ⁄(g) is greater than a decision criterion ⁄c;
otherwise H0 is selected. The decision rule can be represented as:

⁄(g)
H1
?
H0

⁄c (3.9)

Then by changing the decision criterion ⁄c, the MO’s task performance can be characterized by a
figure of merit (FOM), e.g. the area under the Receiver Operating Characteristic (ROC) curve
(AUC) (cf. Chapter 2 for more information on the FOM).

Detection of one single signal on 2D images
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Background model

9

(a) White Gaussian background (WGB)

(b) Correlated Gaussian background (CGB)

(c) Lumpy background (LB)

(d) Clustered lumpy background (CLB)

• Simulated backgrounds:

• Real backgrounds (small 
homogeneous regions):

Mammogram ImageMR Image

One context of the task: Modality
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Signal Model

• One example: 2D elliptical Gaussian function
-> to simulate Multiple Sclerosis (MS) lesion
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Figure 3.1: Examples of four background model simulations: (a) White Gaussian Background
(WNB) ; (b) Correlated Gaussian Background (CGB); (c) Lumpy Background (LB); (d) Clustered
Lumpy Background (CLB).

3.1.2 Signal Models

To facilitate the mathematical manipulation while keeping the analysis general and representa-
tive, the signal is usually modeled with a two-dimensional (2D) elliptical Gaussian function:

[x]p = a exp
3

≠1
2 (p ≠ q)t BtD≠1B (p ≠ q)

4
(3.3)

where [x]p denotes the intensity value of the added signal at the 2D coordinate p. The signal
intensity attenuation is hereby modeled by a Gaussian function of peak amplitude a, centered at
q. The diagonal matrix D in Eq.(3.4) specifies the ellipse’s scale ‡ and shape b (b Ø 1). Note
that

Ô
b‡ and ‡ are one-half of the ellipse’s major and minor axes respectively; when b = 1, the

ellipse arises as a circle. The rotation matrix B in Eq.(3.5) rotates the signal by ◊ around the

30 CHAPTER 3. MODEL OBSERVERS (MO)

signal center.

D =
S

U b‡
2 0

0 ‡
2

T

V (3.4)

B =
S

U cos ◊ ≠ sin ◊

sin ◊ cos ◊

T

V (3.5)

The signal parameters can be denoted as a vector:

– = [a, ◊, b, ‡, q] (3.6)

x– denotes then a particular realization. Note that other choices of signal models are also possible
with our numerical observer. In general, it could be written as:

[x]p = f(–) (3.7)

Similartly to the concepts of BKE and BKS, we say that the task is a Signal Known Exactly
(SKE) task if all the signal parameters – are known a priori by the observers. Otherwise, if at least
one of the signal parameters is not known exactly, but specified by a PDF, the task corresponds to
a Signal Known Statistically (SKS) task.

Given the signal model in Eq.(3.3), the signal information will be coded via the a priori
probability function of –, for which we assume that the different variables are independent:

P (–) = P (a)P (◊)P (b)P (‡2)P (q) (3.8)

The signal is only known from its statistical characteristics.
Figure 3.2 illustrates examples of one signal added on the four noisy backgrounds presented in

Figure 3.1 (the elliptical signal is at the centers). Note that with the presence of spatial correlation,
the same signal seems more difficult to be detected by human eyes.
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Another context of the task: Pathology
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Signal parametersSignal Known Exactly (SKE)

Signal Known Statistically (SKS)
MOs

Multiple Sclerosis (MS)
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SKE MOs
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Table 1: Comparison of the IO, the HO and the CHO.

Ideal Observer (IO) Hotelling Observer (HO) Channelized HO (CHO)

Input data

Full knowledge of the
PDFs of the image
for each hypothesis

P(g | H0) and P(g | H1)

First- and second- order statistics
of the image for each hypothesis

First- and second- order statistics
of the channelized image for

each hypothesis

Output
(test statistic)

likelihood-ratio
�IO(g) = P(g | H1)

P(g | H0) ,
or log-likelihood-ratio
ln �IO(g) = ln P(g | H1)

P(g | H0)

�HO(g) = w
t
HOg

where
wHO = S

�1
2 (hg | H1i � hg | H0i),

S2 = 1/2(K0 +K1),
K0 and K1 are the ensemble
covariance matrices of the
image data, without and
with signal respectively.

�CHO = wt
CHOg

0

where
g0 = U

tg,
wCHO = b⌃0

�1bx0,
bx0 = hg0 | H1i � hg0 | H0i,
b⌃0 = 1/2(K00 +K

0
1),

K0 and K1 are the ensemble
covariance matrices of the
channelized image data,
without and with signal.

Discriminant
function
linearity

Nonlinear Linear Linear

Optimality Optimal (maximum
AUC among all MOs)

Optimal (maximum
detectability index d0

among all linear MOs)

Optimal or anthropomorphic
(depending on channel profile)

Calculability

High-dimentional PDFs
are di�cult to compute

for real clinical data sets,
except for simple cases

High-dimentional ensemble
covariance matrices of the image

are di�cult to be inverted.

Dimensionality, resulting
in the calculation burden,

is reduced by the
channelization technique.

where

var0 = h(�(g) � h�(g) | H0i)(�(g) � h�(g) | H0i)t
| H0i

var1 = h(�(g) � h�(g) | H1i)(�(g) � h�(g) | H1i)t
| H1i

All linear observers have a linear discriminant function of the image data g:

�l(g) = wtg (6)

where w (M ⇥ 1 vector) is called a “template”.
Note that the calculation of the HO’s template needs to inverse the covariance matrices K0 and K1:

K0 = h(g � hg | H0i)(g � hg | H0i)t
| H0i

K1 = h(g � hg | H1i)(g � hg | H1i)t
| H1i (7)

This becomes di�cult considering the modern image high-dimensionality.
To reduce the calculation burden introduced by the high-dimensionality, the linear observer called Channelized

Hotelling Observer (CHO) was proposed. It preprocesses the image data through a channelization stage that decom-
poses an image into di↵erent channels via a serie of filters, c.f. Fig. 3.

The CHO can be implemented by two stages: training stage and test stage, as shown in Fig. 4. In the training
stage, the inputs are two sets of images, one contains signal while the other does not; the output is a template. In the
test stage, the template is used to calculate a test statistic for each input test image.

4
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SKE MO: Channelized Hotelling Observer (CHO)
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After we write the norms of the vectors in Eq.(3.41) as inner products, we have exactly
proved the inequality Eq.(3.40).

4. Model Observers Considering the Characteristics of HVS

4.1. Nonprewhitening Matched Filter (NPWMF).

Many experiments have proved that when the correlated noise is introduced, the e�ciency
of the human observer is reduced. That illustrates that the human observer can not perform
the prewhitening operation.

Therefore, the Nonprewhitening Matched Filter (NPWMF) is proposed to model the
human observer:

�NPW(g) = �gtg
D2

?
D1

�t (4.1)

where �g � (g2 � g1)
t.

4.2. Channelized Hotelling Observer (CHO).

4.2.1. Channelized Observer.

In accordance with the works of many researchers, one important characteristic of the
Human Visual System (HVS) is found, that is actually HVS processes the images through a
finite number of channels.

Figure 3. Block Diagram of a Channelized Observer

Test statisticObserver
Data g t(v)

u1

u2

u3

uP

v3

v2

v1

vP

As shown in Fig.3 [1], the channel characteristic of the HVS could be thought of as a
process of decomposing the original image data g into P channels, each channel is represented
by a column vector up, p = 1, 2...P . So the output of the channels can be given by:

v = Utg (4.2)

where U is the M � P matrix whose columns are the channel profiles up, and v is the P � 1
vector of channel output.

So in terms of perceptual way (viz. replace the original image data g with the channel
output data v), it’s not di�cult to name the “optimal” model observer. The channelized

g'

image data
g

Figure 3.3: An example of a channelized Model Observer (MO), where the input image is
decomposed by P filters.

where U (dimension M ◊ P ) represents the linear filtering operator:

U = [u1,u2, ...,up, ...,uP ] (3.19)

where p = 1, 2, 3, ..., P . Note that the dimension of the channelized output gÕ is reduced to P ◊ 1,
and normally P π M . Then all the calculations are executed on these channelized data, which is
denoted by (·)Õ hereafter. The block diagram of a channelized MO is illustrated in Figure 3.3.

3.2.3.2 Implementation of CHO

The Channelized Hotelling Observer (CHO) [53] emerged as required to resolve the problem
of HO (dimentionality) through channelization. It is well-known for its calculability and mathe-
matical traceability among the channelized MOs. Similar to the HO, the CHO also employs a
linear discriminant which is a linear function of the image g.

The CHO paradigm consists of two stages: training and test, as shown in Figure 3.4.
We take the SKE CHO as an example to illustrate the practical implementation of the training

and test stages, it is detailed as follows:

1. In the training stage, the inputs are two sets of images, one contains signal while the other
does not. Their ground truth is known for the CHO. The output is a template:

wCHO = „�Õ
≠1„xÕ (3.20)

where ‚x is the estimated signal, which is the difference of the sample averages of the
channelized two sets; and ‚� is the average of the covariance matrices of the channelized

34 CHAPTER 3. MODEL OBSERVERS (MO)

Ratio (SNR), also called detectability index, among all linear observers. This is equivalent to
maximizing AUC if the image data are Gaussian distributed.

Note that the definition of SNR here is different from the term used in electrical enginerring.
In medical image quality assessment domain, SNR is defined as the distance between the test
statistic mean divided by the square root of their average variance [52]:

SNR = È⁄(g) | H1Í ≠ È⁄(g) | H0ÍÒ
1
2var0 + 1

2var1
(3.17)

where

var0 = È(⁄(g) ≠ È⁄(g) | H0Í)(⁄(g) ≠ È⁄(g) | H0Í)t | H0Í

var1 = È(⁄(g) ≠ È⁄(g) | H1Í)(⁄(g) ≠ È⁄(g) | H1Í)t | H1Í

The HO is “optimal” (or “ideal”) in the sense of SNR.

The HO has all the advantages that a linear observer has: it’s easy to compute; its performance
is easy to summarize; far less information regarding the image statistics is needed, etc.. However,
it needs the ensemble covariance matrix of the image and the ensemble covariance matrix of
the image needs to be inverted. This becomes problematic in the face of modern image high-
dimensionality. For example, if the image dimensions are 256 ◊ 256, its covariance matrix would
be 65536 ◊ 65536, which is practically not feasible.

3.2.3 Channelized Hotelling Observer (CHO)

To encounter the problem of the HO, another interesting linear observer CHO was proposed.

3.2.3.1 Channelization

One approach to reduce the calculation burden (introduced by the high-dimensionality) of one
image to a reasonable level is to pre-process the image data through a channelization stage.

The channelization, via a series of filters, is a technique that decomposes an image into
different channels [53]. The formalization matrix is written as:

gÕ = Utg, (3.18)

3.1. GENERAL CONSIDERATIONS 27

Part III).
Finally, multi-slice MOs proposed in the literature are presented, considering the trend to

volumetric images in medical domain. Three categories of the existing multi-slice MOs are
single-slice CHO (ssCHO), volumetric CHO (vCHO) and multi-slice CHO (msCHO). The ssCHO
does not incorporate information in the z direction, and only considers the central slice; the vCHO
may have more calculation burden when the image size increases; the msCHO firstly obtains
a score for each slice in x-y plane then weights the score in the z direction to result in a scalar.
Note that the existing multi-slice MOs only process the SKE task, and we will propose a novel
multi-slice numerical observer for SKS task (cf. Chapter 9 in Part III).

3.1 General considerations

In general, model observer (MO) is designed to detect a signal on a noisy background. The
problem can be seen as the validation of one of the two following exclusive hypotheses:

H0 : signal-absent

H1 : signal-present (3.1)

Normally the amount of noise is assumed to be so small that it does not disturb the statistical
properties of the background.

The two hypotheses can be formulated as follows:

Hh : g = hx + b, h = 0, 1 (3.2)

where g is an M ◊ 1 column vector representing the digital image under consideration consisting
of M pixels of the image; and the absence or presence of the signal is controlled by the binary
variable h. Hereafter, all 2D data (image, signal or background) will be represented by a column
vector through vertical concatenation.

3.1.1 Background models

In medical image quality assessment domain, the noisy background, denoted as b in Eq.(3.2),
is the modeling of clinical image without the presence of signal. The background complexity thus
depends on the considered application.

There are mainly four categories of background models used in the literature:

: P× 1, P<<M
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Ratio (SNR), also called detectability index, among all linear observers. This is equivalent to
maximizing AUC if the image data are Gaussian distributed.

Note that the definition of SNR here is different from the term used in electrical enginerring.
In medical image quality assessment domain, SNR is defined as the distance between the test
statistic mean divided by the square root of their average variance [52]:

SNR = È⁄(g) | H1Í ≠ È⁄(g) | H0ÍÒ
1
2var0 + 1

2var1
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where
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var1 = È(⁄(g) ≠ È⁄(g) | H1Í)(⁄(g) ≠ È⁄(g) | H1Í)t | H1Í

The HO is “optimal” (or “ideal”) in the sense of SNR.

The HO has all the advantages that a linear observer has: it’s easy to compute; its performance
is easy to summarize; far less information regarding the image statistics is needed, etc.. However,
it needs the ensemble covariance matrix of the image and the ensemble covariance matrix of
the image needs to be inverted. This becomes problematic in the face of modern image high-
dimensionality. For example, if the image dimensions are 256 ◊ 256, its covariance matrix would
be 65536 ◊ 65536, which is practically not feasible.

3.2.3 Channelized Hotelling Observer (CHO)

To encounter the problem of the HO, another interesting linear observer CHO was proposed.

3.2.3.1 Channelization

One approach to reduce the calculation burden (introduced by the high-dimensionality) of one
image to a reasonable level is to pre-process the image data through a channelization stage.

The channelization, via a series of filters, is a technique that decomposes an image into
different channels [53]. The formalization matrix is written as:

gÕ = Utg, (3.18)

• Channelization:

1 N2 …

N pairs of 
Training Images

Lesion-Absent Lesion-Present
1 N2 … g

Test Image

template

Test 
Statistic

(Scalar λ)

H1 : g=b+xH0 : g=b

• Practical Implementation:
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7.1. JOINT DETECTION AND ESTIMATION (JDE) 101

of unknown signal parameters:

\(–, Hh) = arg max
–,Hh

P (–, Hh | g)

= arg max
–,Hh

P (g | –, Hh)P (–)P (Hh)
P (g)

= arg max
–,Hh

P (g | –, Hh)P (–)P (Hh) (7.3)

where the statistical independence of – and Hh has been exploited. Under the assumption of a
zero-mean Correlated Gaussian Background (CGB, cf. Section 3.1.1), the conditional probability
density function P (g | –, Hh) can be written as:

P (g | –, Hh) = 1
Ò

(2fi)M | �b |
exp

;
≠1

2(g ≠ hx–)t�b
≠1(g ≠ hx–)

<
(7.4)

In view of the monotonic logarithmic function, the maximization of the Eq.(7.3) is then equivalent
to:

\(–, Hh) = arg max
–,Hk

;
ln P (Hh) + ln P (–) ≠ 1

2(g ≠ hx–)t�≠1
b (g ≠ hx–)

<
(7.5)
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–,Hh

{ln P (Hh) + ln P (–)

≠ 1
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b x– + h

2xt
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b x–)
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(7.6)
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(7.7)

= arg max
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;
ln P (Hh) + ln P (–) + hxt

–�≠1
b (g ≠ 1

2hx–)
<

(7.8)

where the term gt�≠1
b g is ignored in Eq.(7.7) since it is not a function of – and Hh. Notice that

the transpose of a scalar term (e.g. hgt�≠1
b x–) is equal to itself.

Validation of a hypothesis      is accompanied by the maximum a posteriori 
probability (MAP) estimation of unknown signal parameters:
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SKS MO: CJO (Channelized Joint Observer)

1L. Zhang, B. Goossens, C. Cavaro-Menard and P. Le Callet, “A model observer for the detection and estimation of
signals with unknown amplitude, orientation and size”, JOSA A, 2013.

CJO1: unknown signal amplitude, orientation and size

1 N2 …

N pairs of 
Training Images

Lesion-Absent Lesion-Present
1 N2 … g

Test Image

1. Template
2. Reference signal

1.Test Statistic
2. Parameter 

estimates

H1 : g=b+ xαH0 : g=b

• Practical Implementation:
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1. Model observer tasks:
(1) Detection of one single signal on 2D images
(2) Detection-Localization of one single signal on 2D images
(3) Detection-Localization of multiple signals on 2D images
(4) Detection-Localization of multiple signals on 3D images

2. Validation & performance
(1) Figure of merit: ROC & Variants of ROC
(2) Experiments using human observers

3. MO approximation using ANN

4. Conclusions and future works
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Position unknown SKS MOs
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Zhang et al. / Innovation and Research in BioMedical engineering 00 (2013) 1–12 8

Table 3: Comparison of existing SKS MOs.

Authors Diagnostic
task

Unknown
parameters

# signals
per image Brief description of method

Park’s et al. localization location one

A scanning CHO scans the image exhaustively,
and the location that gives the largest test statistic

is chosen as the tentative location while that
test statistic is the final test statistic.

Gi↵ord et al. localization location one
A visual-search (VS) model firstly identifies some

candidate blobs guided by features of the test image,
then applies a scanning CHO on each candidate blob.

Clarkson estimation
all

possible
parameters

one

A theoretical framework of an ideal Estimation ROC
(EROC) observer (cf. [27, 28]), whose EROC curve
lies above those of all other observers for the given

joint detection-estimation task, was proposed.

Whitaker et al. estimation
amplitude,

size and
location

one A scanning-linear estimator performs a
global-extremum search to maximize a linear metric.

8
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1. Model observer tasks:
(1) Detection of one single signal on 2D images
(2) Detection-Localization of one single signal on 2D images
(3) Detection-Localization of multiple signals on 2D images
(4) Detection-Localization of multiple signals on 3D images

2. Validation & performance
(1) Figure of merit: ROC & Variants of ROC
(2) Experiments using human observers

3. MO approximation using ANN

4. Conclusions and future works
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Multiple lesions case

q Scanning-MO
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n Address the difficulty of multiple-signal localization using a HVS
model to select candidate blocks.

n PCJO greatly extends the range of variable signal parameters

19

PCJO2 (Perceptually relevant CJO)

2L. Zhang, C. Cavaro-Menard, P. Le Callet, et J.-Y. Tanguy, “A Perceptually Relevant Channelized Joint Observer (PCJO)
for the Detection-Localization of Parametric Signals”, IEEE Transactions on Medical Imaging, oct. 2012
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1. Model observer tasks:
(1) Detection of one single signal on 2D images
(2) Detection-Localization of one single signal on 2D images
(3) Detection-Localization of multiple signals on 2D images
(4) Detection-Localization of multiple signals on 3D images

2. Validation & performance
(1) Figure of merit: ROC & Variants of ROC
(2) Experiments using human observers

3. MO approximation using ANN

4. Conclusions and future works
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Volumetric image provides more anatomical information,

which allows for a better distinction between true lesions

and noise or background structure.

22

Multi-slice/Volumetric images
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Multi-slice/Volumetric Model Observers
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Multi-slice/Volumetric Model Observers

msPCJO3
introduced the asymmetrical signal and the SKS task into the multi-slice numerical
observer, capable of estimating signal parameters (location, amplitude, orientation and
size).

3L. Zhang, C. Cavaro-Ménard, P. Le Callet, “A multi-slice model observer for medical image quality assessment”.
ICASSP, April 2015, Brisbane, Australia.
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1. Model observer tasks:
(1) Detection of one single signal on 2D images
(2) Detection-Localization of one single signal on 2D images
(3) Detection-Localization of multiple signals on 2D images
(4) Detection-Localization of multiple signals on 3D images

2. Validation & performance
(1) Figure of merit: ROC & Variants of ROC
(2) Experiments using human observers

3. MO approximation using ANN

4. Conclusions and future works

Agenda
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lesion-
present

lesion-
absent

TPF

FPF

TPTN
FN FP

criterion

0 1

1 System 1
System 2

AUC =0.88
AUC =0.79

Figure of Merit

Gold standard

lesion-present lesion-absent

Observer’s 
response

positive TP FP

negative FN TN

26

ROC (Receiver Operating Characteristics)

test statistic

To characterize the performance of detection task of one single signal on 2D images:

Model Observer
Human Observer
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Marked coordinates
(? distance < 

acceptance radius)

TP

FP

Marked rate
(? rate > 

decision criterion)

“positive”

“negative”

JAFROC1:
www.devchakraborty.com

Highest statistical 
power for detection-
localization task

27

Detection-localization tasks

http://www.devchakraborty.com
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1. Model observer tasks:
(1) Detection of one single signal on 2D images
(2) Detection-Localization of one single signal on 2D images
(3) Detection-Localization of multiple signals on 2D images
(4) Detection-Localization of multiple signals on 3D images

2. Validation & performance
(1) Figure of merit: ROC & Variants of ROC
(2) Experiments using human observers

3. MO approximation using ANN

4. Conclusions and future works

Agenda
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Validation study on 2D images
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Validation study on 3D images
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1. Model observer tasks:
(1) Detection of one single signal on 2D images
(2) Detection-Localization of one single signal on 2D images
(3) Detection-Localization of multiple signals on 2D images
(4) Detection-Localization of multiple signals on 3D images

2. Validation & performance
(1) Figure of merit: ROC & Variants of ROC
(2) Experiments using human observers

3. MO approximation using ANN

4. Conclusions and future works

Agenda
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MO approximation using ANN
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[1] Kupinski, Matthew A., et al. "Ideal observer approximation using Bayesian classification neural networks." IEEE transactions 
on medical imaging 20.9 (2001): 886-899.
[2] Zhou, Weimin, Hua Li, and Mark A. Anastasio. "Approximating the Ideal Observer and Hotelling Observer for binary signal 
detection tasks by use of supervised learning methods." IEEE transactions on medical imaging 38.10 (2019): 2456-2468.
[3] Zhou, Weimin, Hua Li, and Mark A. Anastasio. "Approximating the Ideal Observer for joint signal detection and localization
tasks by use of supervised learning methods." IEEE transactions on medical imaging 39.12 (2020): 3992-4000.

Authors Year Task ANN

Kupinski et al. [1] 2001 Detection A neural network with an input layer, a single 
hidden layer and a single output node

Zhou et al. [2] 2019 Detection

Zhou et al. [3] 2020 Detection
and 
Localization
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MO approximation using ANN
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• General idea:

– Learn the empirical estimate of the Hotelling template

– Solve the high-dimentionality problem

– Localization task is addressed by scanning observer 

paradigm

• Open questions:

– No comparison between CHO and ANN approximated HO

– Only tested on simulated images
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1. Model observer tasks:
(1) Detection of one single signal on 2D images
(2) Detection-Localization of one single signal on 2D images
(3) Detection-Localization of multiple signals on 2D images
(4) Detection-Localization of multiple signals on 3D images

2. Validation & performance
(1) Figure of merit: ROC & Variants of ROC
(2) Experiments using human observers

3. MO approximation using ANN

4. Conclusions and future works

Agenda
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Conclusions

• Model observers have been proposed:
– not to substitute medical experts
– but to predict medical experts' performance
– quantify/evaluate medical imaging systems

• MO study should have some relevance for clinical tasks 
of interest.

• Use medical experts for the validation.
• Important “context” impact factors:

– Pathology type: 
• Characteristics of lesion
• Number of lesions…

– Modality
– Expertise …
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Future works?

• More applications of the model observers

• More tasks?

- Characterization task

• More modalities ?
– More background models

– Color…

- Segmentation task

- Surgery task…
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