# A Tale of Two Datasets Learning from subjectively evaluating CAMBI\*

#### Zhi Li & Lukas Krasula

Video and Image Quality Encoding Technologies

VQEG December 2021 {zli, lkrasula}@netflix.com \*Details about the CAMBI banding detection algorithm will be presented in Tuesday's NORM session.

https://tinyurl.com/2cheb485

**Banding (aka false contouring)** is false staircase-like edges in otherwise smooth transitions in a picture.

One of the most prominent causes for banding is the quantization in lossy video compression.

Another significant factor for banding visibility is the bit depth (e.g. 8- vs 10-bit) to represent a video signal.

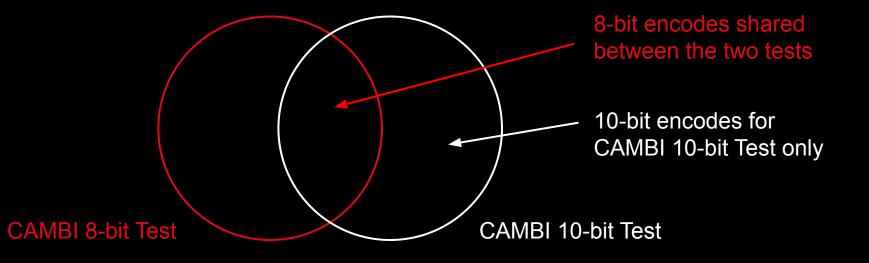




### 10-bit depth

Over the process of developing CAMBI, we have conducted two subjective tests to collect data to support algorithm tuning and validation.

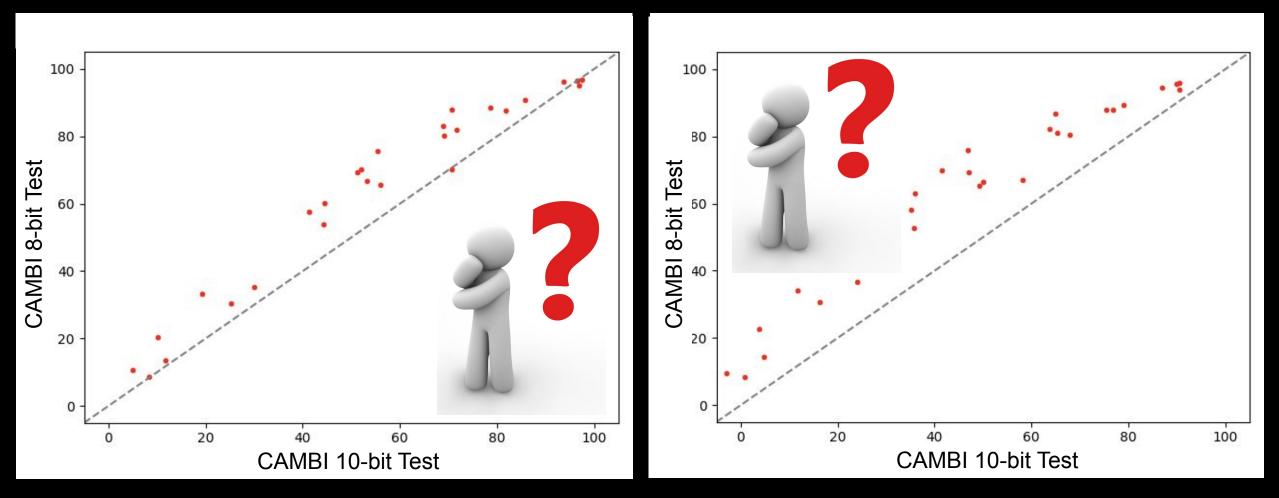
The CAMBI 8-bit Test uses only 8-bit encodes; the CAMBI 10-bit Test includes 10-bit encodes, but also a subset of 8-bit encodes from the 8-bit Test.



For data analysis, we use two techniques to calculate the MOS:

- Bias-subtracted MOS: ITU-T P.913 Section 12.4
- Bias-subtracted consistency-weighted MOS: recently <u>standardized</u> in ITU-T P.913 Section 12.6 and ITU-T P.910 Annex E (prepublished)

### **Recovered MOS for the 8-bit encodes shared** across two datasets



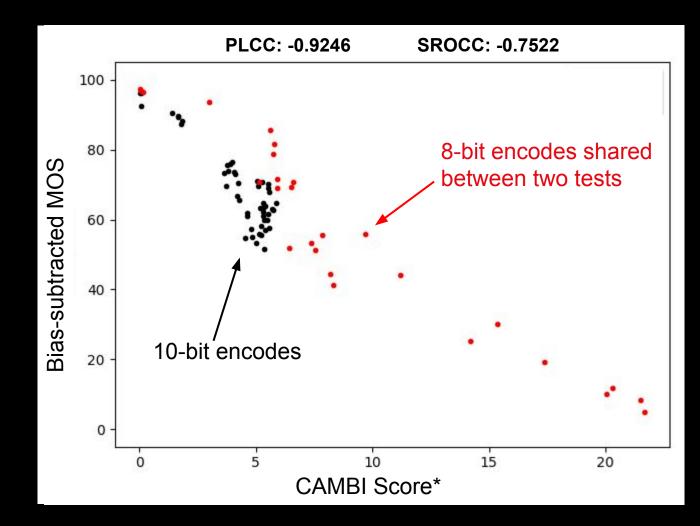
Analysis using bias-subtracted MOS

Analysis using bias-subtracted consistency-weighted MOS

## Two puzzles:

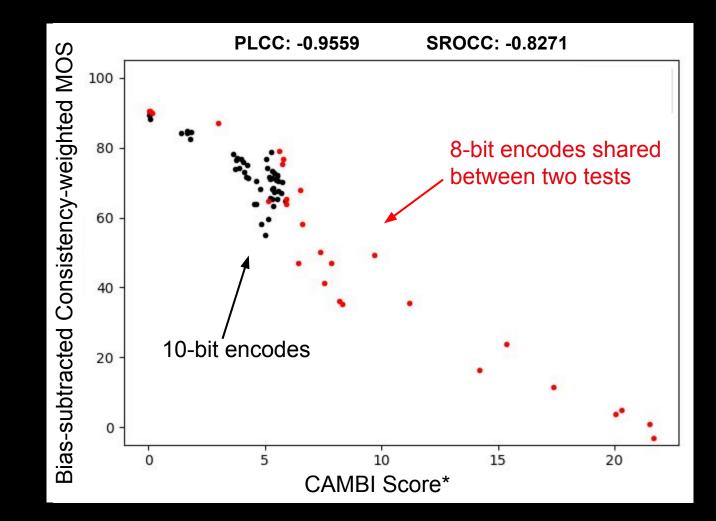
- Why do the shared 8-bit encodes receive lower scores in the CAMBI 10-bit Test than in the CAMBI 8-bit Test?
- Why does the analysis using bias-subtracted consistency-weighted MOS further encourage this behavior?

### Inspecting the whole CAMBI 10-bit dataset: Bias-subtracted MOS vs. CAMBI score



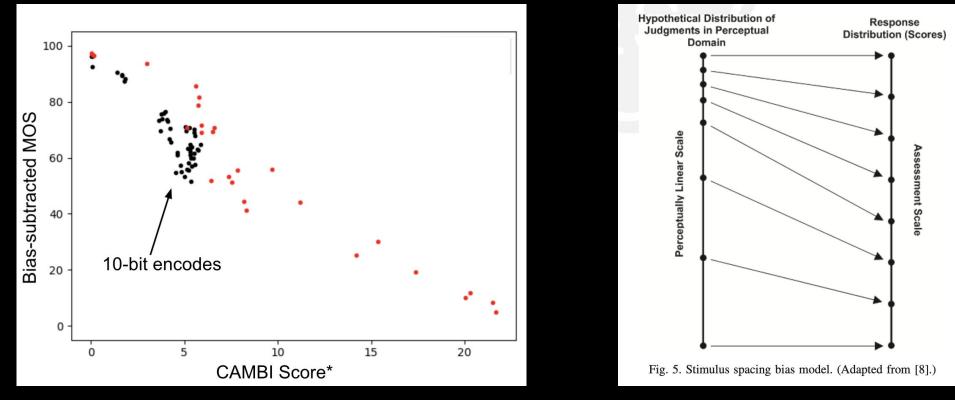
\*Interpreting CAMBI score: 0 means no banding; 24 is severe banding (unwatchable); around 5 is where banding starts to become slightly annoying.

### Inspecting the whole CAMBI 10-bit dataset: Bias-subtracted consistency-weighted MOS vs. CAMBI score



\*Interpreting CAMBI score: 0 means no banding; 24 is severe banding (unwatchable); around 5 is where banding starts to become slightly annoying.

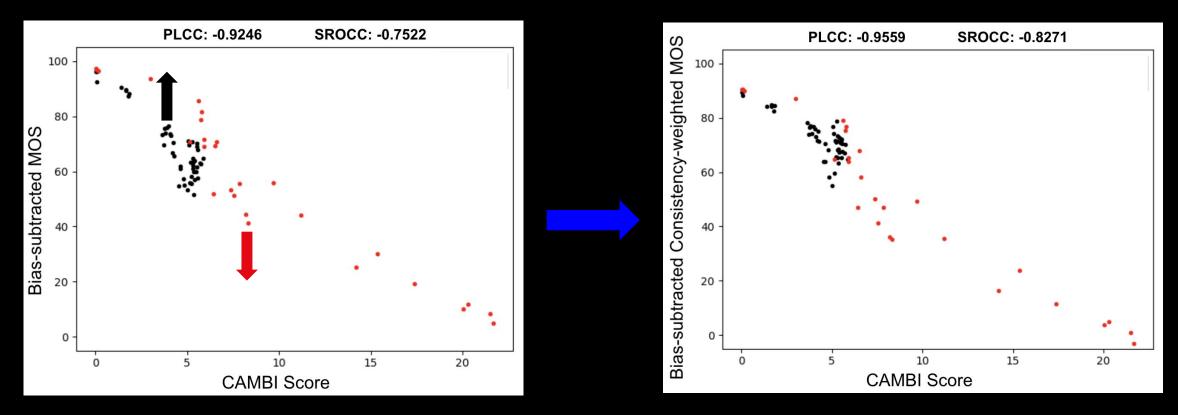
# Observation #1: the perceptual quality of the 10-bit encodes in the CAMBI 10-bit Test dataset is very concentrated in a small region.



[Zielinski & Rumsey '08]

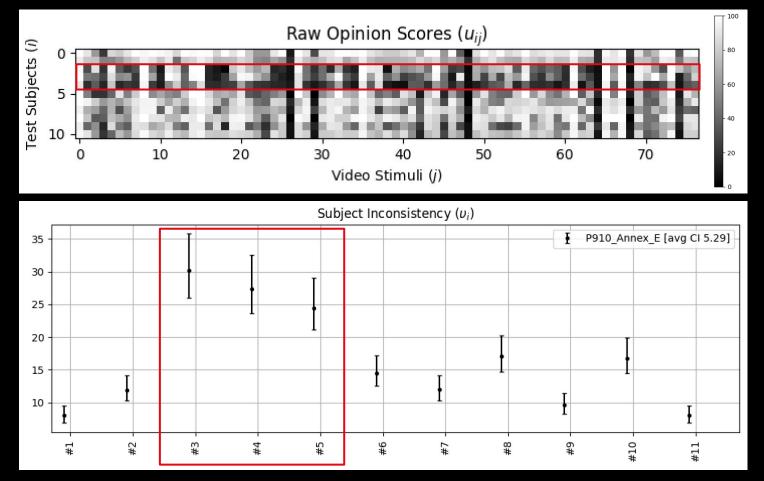
This encourages stimulus spacing bias, pushing down the scores of the 8-bit encodes.

Observation #2: the pure effect of the consistency-weighting is to bring up the 10-bit encodes' scores and bring down the 8-bit encodes' scores. (Coincidentally or not, the correlation between the MOS and the CAMBI scores also improves.)



### ... How does it manage to achieve this?

# This is accomplished by giving unequal weights proportional to subjects' consistency.



Subjects #3, #4, #5 produce scores of large variability (high random error), leading to regression to the mean. Consistency-weighting reduces this effect.

### **Lessons** learned

- Some subjective tests inevitably have perceptually unbalanced stimuli. This could result in stimulus spacing bias, and introduce systematic error and random error to the dataset.
- Applying data analysis technique in P.913 Section 12.6 (or P.910 Annex E) could mitigate the random error introduced, by weighing subjects by their consistency ("soft rejection").
- Because this technique adjusts scores locally, it could not eliminate the systematic error, which is global.

# The end



VQEG December 2021 {zli, lkrasula}@netflix.com **Test parameters** 

- 9 contents, 3 resolutions (4K, QHD, FHD), AV1 encoder, 3 QPs (12, 20, 32)
- CAMBI 8-bit Test: 86 8-bit videos, 23 observers
- CAMBI 10-bit Test: 77 videos (50 10-bit and 27 8-bit videos), 11 observers

### **Bias-Subtracted MOS** - ITU-T P.913 Section 12.4

First, estimate the MOS for each PVS:

$$\mu_{\psi_j} = \frac{1}{I_j} \sum_{i=1}^{I_j} o_{ij}$$

where:

- $o_{ij}$  is the observed rating for subject *i* and PVS *j*;
- $I_j$  is the number of subjects that rated PVS j;

 $\mu_{\psi_j}$  estimates the MOS for PVS *j*, given the source stimuli and subjects in the experiment.

Second, estimate subject bias:

$$\mathbf{u}_{\Delta_i} = \sum_{j=1}^{J_i} \left( o_{ij} - \boldsymbol{\mu}_{\psi_j} \right)$$

where:

- $\mu_{\Delta_i}$  estimates the overall shift between the *i*th subject's scores and the true values (i.e., opinion bias)
- $J_i$  is the number of PVSs rated by subject *i*.

Third, calculate the normalized ratings by removing subject bias from each rating:

 $r_{ij} = o_{ij} - \mu_{\Delta_i}$ 

where:

 $r_{ij}$  is the normalized rating for subject *i* and PVS *j*.

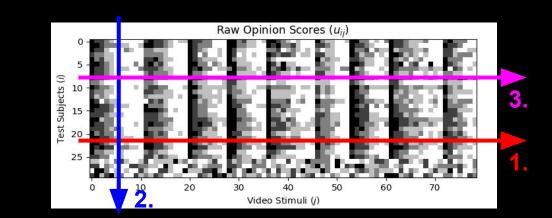
MOS and DMOS are then calculated normally. This normalization does not impact MOS:

$$\mu_{\Psi_j} = \frac{1}{I_j} \sum_{i=1}^{I_j} r_{ij} = \frac{1}{I_j} \sum_{i=1}^{I_j} o_{ij}$$

where:

 $\mu_{\Psi_i}$  estimates the MOS of PVS *j*.

- 1. Video by video, estimate MOS by averaging over subjects
- 2. Subject by subject, estimate subject bias by comparing against MOS
- 3. Video by video, estimate MOS again based on bias-removed opinion scores (often combined with BT.500-style subject rejection)



# Bias-Subtracted Consistency-Weighted MOS - ITU-T P.913 Section 12.6 and ITU-T P.910 Annex E (Prepublished)

#### • Input:

- $u_{ijr}$  for subject i = 1, ..., I, stimulus j = 1, ..., J and repetition r = 1, ..., R.
- Stop threshold  $\psi^{thr}$ .
- Initialize  $\{\psi_j\} \leftarrow \{MOS_j\}$ , where  $MOS_j = (\sum_{ir} 1)^{-1} \sum_{ir} u_{ijr}$ .
- Initialize  $\{\Delta_i\} \leftarrow \{BIAS_i\}$ , where  $BIAS_i = (\sum_{jr} 1)^{-1} \sum_{jr} (u_{ijr} MOS_j)$ .

#### • Loop:

$$\circ \quad \{\psi_j^{prev}\} \leftarrow \{\psi_j\}.$$

- $\epsilon_{ijr} \leftarrow u_{ijr} \psi_j \Delta_i$  for  $i = 1, \dots, I, j = 1, \dots, J$  and  $r = 1, \dots, R$ .
- $v_i \leftarrow \sigma_i \{\epsilon_{ijr}\}$ , where  $\sigma_i \{\epsilon_{ijr}\} = \sqrt{(\sum_{jr} 1)^{-1} \sum_{jr} (\epsilon_{ijr} \epsilon_i)^2 \epsilon_i^2}$  and  $\epsilon_i = (\sum_{jr} 1)^{-1} \sum_{jr} \epsilon_{ijr}$ , for i = 1, ..., I.
- $\circ \quad \psi_j \leftarrow (\sum_{ir} v_i^{-2})^{-1} \sum_{ir} v_i^{-2} (u_{ijr} \Delta_i), \text{ for } j = 1, \dots, J.$
- $\Delta_i \leftarrow \left(\sum_{jr} 1\right)^{-1} \sum_{jr} (u_{ijr} \psi_j), \text{ for } i = 1, \dots, I.$

• If 
$$\sqrt{\sum_{j=1}^{J} (\psi_j - \psi_j^{prev})^2} < \psi^{thr}$$
, break.

• Output:  $\{\psi_j\}, \{\Delta_i\}, \{v_i\}.$ 

- Video by video, estimate MOS by averaging over subjects
  - 2. Subject by subject, estimate subject bias by comparing against the MOS

#### In a loop:

- a. Subject by subject, estimate subject inconsistency as the std of the residue of raw scores
- b. Repeat step 1 (with weighting).
- c. Repeat step 2.
- d. If solution stabilizes, break

