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Introduction – emotions 

• Emotions play an important role in communication

• Emotions have been studied in various fields:
psychology, HCI, and computer science (affective computing)

• Applications: education, mental health, marketing…

• Facial expression recognition (FER) made possible thanks to advances 
in computer vision, yet is remains a challenging task
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Introduction – humans vs. machines 

• Comparing the performance of humans and machines can help 
diagnose cases where machines fail

• Dodge & Karam (2017) compared humans and DNNs on a 
classification task of dog images distorted with Gaussian noise and 
Gaussian blur at different levels à humans more robust to distortions
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Introduction – FER 

• Yang et al. (2021): 5 commercial systems on distorted images
à limitations of studied models under certain manipulations

• Abate et al. (2022): how FER systems deal with face masks
à mouth strongly contributes to emotion classification

• Krumhuber et al. (2021): comparison of FACET and humans
à both perform better on posed expressions than spontaneous

• Dupré et al. (2020): comparison of 8 commercial models and humans
à accuracy of 62% for best model (FACET), while of 75% for humans
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Introduction – contributions  

• DisFER: new FER dataset composed of distorted images of faces
(released soon)

• Large-scale experiment conducted on a crowdsourcing platform

• Comparison of the performance of humans with pre-trained and
fine-tuned open-source FER models

• Discussion on the definition of facial expression ground truth
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Materials & methods – dataset 

• 84 sources images from FER-2013 dataset (Goodfellow et al.)

• 12 images per basic emotions
à anger, disgust, fear, happiness, neutral, sadness, and surprise
(Ekman et al., 1992)

• 3 types of distortion (GB, GN, SP) at 3 different levels

• Total of 840 stimuli (including the original)
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Materials & methods – dataset 

• Example of stimuli: 

8/17



Materials & methods – crowdsourcing experiment

• Rating 840 images is time-consuming and tiring
à crowdsourcing experiment

• DisFER carefully split into 21 playlists of 40 images
(same numbers of images of a given consideration)

• 1051 participants (50% females) were recruited using Prolific
à 20 playlists watched and rated by 50 distinct participants,
1 playlist by 51 participants)
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Materials & methods – DNNs 

• Preliminary benchmark (Sampaio et al., 2022):
2 open-source pre-trained models
à Residual Masking Network (RMN): 51% accuracy on FER-2013
à DeepFace: 55% accuracy on FER-2013

• Both models fine-tuned for each distortion type (GB, GN, and SP)
à Training phase: sparse categorical cross entropy as loss function
à 27 batches of 42 images
à each batch homogeneously divided among the 7 emotions
(half of a batch: original images, other half: distorted)
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Results – overall

• Human baseline: expression selected by the highest number of 
participants for a given image

• Overall human accuracy using original FER-2013 labels: 63% 
(close to human accuracy on FER-2013)
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RMN RMN FT DeepFace DeepFace FT

Accuracy 0.26 0.52 0.33 0.52

Cohen’s kappa 0.13 0.43 0.22 0.44



Results – accuracy
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Results – confusion matrices
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Discussion – on obtained results

• Human visual system more robust to signal distortions than DNN:
experience may play an important role in human performance

• When considering individual performance: average accuracy of 55%, 
lowest of 30% (3 participants), and highest of 80% (1 participant)

• Poor accuracy!?
à questions on labels
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Discussion – on original labels
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• FER-2013 original dataset labelled using Google image search API…

• Question raised: what is ground truth for facial expressions?

• Inter-observer agreement:
à strong agreement on 10% of our dataset (mostly happy images), 
moderate agreement on 60%, and very poor agreement on 10%
à Fleiss’ kappa = 0.6 on our dataset (moderate agreement)

• New ways to define ground truth?
à based on humans’ classifications rather than on search engines
à when humans tend to disagree; 2 (or more) labels?



ACM IMX 2023 held in Nantes next June!

• Workshop proposals: 15th December 2022

• Call for associate chairs: 2nd January 2023

• Call for technical papers: 3rd February 2023

• More information: https://imx.acm.org/2023
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Thank you for your attention J

• Contact: lucie.leveque@univ-nantes.fr

17/17

mailto:lucie.leveque@univ-nantes.fr

