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Example of a Video Coding for Machines Pipeline
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X Degradation introduced by lossy compression.
How resilient a semantic segmentation algorithm is to various compression artifacts?

Considered Coding Configurations

Which encoding strategy should be followed to achieve optimal bitrate accuracy trade-off?
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A total of 1486 coding configurations are considered, including:
¢’ Images with or without colors ¢ Wide range of image resolutions ¢’ 5 codecs from JPEG to VVenC ¢ Wide range of bitrates

Progressive Training Procedure

Comparison of the proposed progressive

X A vision task trained on pristine images performs poorly on distorted content. training with other training strategies
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Experimental Results

JPG BDR gains over VIM using CTC.
(i) Re-trained (ii) Optimal resolution
(iii) Color and grayscale

Rate-mloU trade-off with or without
chroma channels for JPG and VVenC.

BDR gains with™ or without optimal resolution.
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