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Example of a Video Coding for Machines Pipeline
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✔ Low computation on camera side.

✔ Low data transmission to the vision task side.

✘Degradation introduced by lossy compression.

How resilient a semantic segmentation algorithm is to various compression artifacts?

Considered Coding Configurations

Which encoding strategy should be followed to achieve optimal bitrate accuracy trade-off?
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Image reconstructionBitrate reduction

A total of 1486 coding configurations are considered, including:
✔ Images with or without colors ✔ Wide range of image resolutions ✔ 5 codecs from JPEG to VVenC ✔ Wide range of bitrates

Progressive Training Procedure

✘A vision task trained on pristine images performs poorly on distorted content.

✔Mitigated by re-training with distorted images using the proposed progressive training:

f (e) = p∞ +∆p⌊ 1

∆p
(p0 − p∞) exp(−se)⌉

✔Progressive training allows to re-train one DNN on a large amount of distortion at
once, ranging from undistorted to highly distorted.

[1] Kristian Fischer, Christian Blum, Christian Herglotz, and André Kaup. Robust Deep Neural Object Detection and Segmentation for Automotive Driving Scenario with Compressed Image Data. In 2021
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5, 2021.

Comparison of the proposed progressive
training with other training strategies.

Complexity↓ BDR↓
Baseline — 486.57%
Separate train 100.00% 0.00%
Data augm. [1] 46.99% 21.92%
ours, s = 0.085 26.51% 16.44%
ours, s = 0.045 48.19% 9.51%
ours, s = 0.025 86.75% −2.62%

Experimental Results

BDR gains with∗ or without optimal resolution.
Rate-mIoU trade-off with or without
chroma channels for JPG and VVenC.

JPG BDR gains over VTM using CTC.
(i) Re-trained (ii) Optimal resolution

(iii) Color and grayscale
JPG JPG∗ JM JM∗ x265 x265∗ VVenC VVenC∗

JPG 0.0 139.6 53.3 125.7 123.3 178.6 193.8 224.1
JPG∗ −58.3 0.0 −43.1 27.6 −2.7 68.6 26.8 73.0
JM −34.8 75.9 0.0 99.1 71.8 157.5 115.3 179.6
JM∗ −55.7 −21.6 −49.8 0.0 −14.2 34.6 4.3 37.1
x265 −55.2 2.7 −41.8 16.5 0.0 50.3 24.7 63.0
x265∗ −64.1 −40.7 −61.2 −25.7 −33.5 0.0 −19.9 2.0
VVenC −66.0 −21.1 −53.5 −4.2 −19.8 24.9 0.0 32.1
VVenC∗ −69.1 −42.2 −64.2 −27.1 −38.7 −2.0 −24.3 0.0
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(i) (ii) (iii) BDR
644.68%

✓ −4.06%
✓ ✓ −73.41%
✓ ✓ −25.65%
✓ ✓ ✓ −76.13%

✔ 58.3%, 49.8%, 33.5% and 24.3% bitrate sav-
ings with optimal image resolution for JPG,
JM, x265 and VVenC, respectively.

✘BDR increase when removing
chrominance channels, except at
very low rates for JPG/J2K

✔ JPG can significantly outperform
VTM with re-training and opti-
mal image resolution


