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The problem we are trying to answer

- Video encoding is driven by measures (SSE, SAD) to assess the visibility of 
distortion locally, but these pixel-based measures are not well tuned to how 
humans perceive distortions, but efficient to compute.
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The problem we are trying to answer

- Video encoding is driven by measures (SSE, SAD) to assess the visibility of 
distortion locally, but these pixel-based measures are not well tuned to how 
humans perceive distortions, but efficient to compute.

- Our goal is to correct these measurements at a local horizon in a video to 
improve the overall quality and reduce bitrate usage: What is this local 
horizon?

- Requirement: a ground truth dataset to drive the research development and 
metric creation. What is this ground truth data? How can we leverage 
Deep Features extracted from Neural Network to correct SSE?
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Connecting video encoding and localized Human Visual 
System perception with “Perceptual Unit”

● Video encoders make decisions on Coding Units (CUs): mode selection, 
partionating, transform, filters … 
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Connecting video encoding and localized Human Visual 
System perception with “Perceptual Unit”

● Video encoders make decisions on Coding Units (CUs): mode selection, …

● A gaze performed by an human eye is:
○ spatially located, around foveated view: 1° of visual angle, 60ppd under standard viewing 

condition
○ temporally located: gaze fixation movement ~200ms
○ aligned along the direction of an object: pursuit

A spatio-temporal tube aligned along motion on multiple frames

Average eyes gaze duration
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Connecting video encoding and localized Human Visual 
System perception with “Perceptual Unit”

● Video encoders make decisions on Coding Units (CUs): mode selection, …

● A gaze performed by an human eye is:
○ spatially located, around foveated view: 1° of visual angle, 60ppd under standard viewing 

condition
○ temporally located: gaze fixation movement ~200ms
○ aligned along the direction of an object: pursuit 

● Perceptual Unit (PU): same spatio-temporal horizon as a gaze on which we 
want to model how humans perceive distortion to drive CUs encoding

A spatio-temporal tube aligned along motion on multiple frames

Average eyes gaze duration
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Visual example
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Perceptual Units and Perceptual Difference curves in encoding process
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1. Intra scaling of Perceptual 
Difference curves



Dataset creation of tube-contents
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Content selection and data collection



Content creation: encoding
To select tube-contents, we followed these steps:

- Step 1: Encoding of sources (SRCs).
- 115 SRCs from VideoSet dataset[1] @1080p 30fps
- Encoding with libaom AV1 in Random Access mode at fixed QP
- 31 Processed Video Sequences (PVS): encoded with --cq-level ranging from 3 to 63, step of 2

18[1] Haiqiang Wang, Ioannis Katsavounidis, Xin Zhou, Jiwu Huang, Man-On Pun, Xin Jin, Ronggang Wang, Xu Wang, Yun Zhang, Jeonghoon Park, 
Jiantong Zhou, Shawmin Lei, Sam Kwong, C.-C. Jay Kuo, December 29, 2016, "VideoSet", IEEE Dataport, doi: https://dx.doi.org/10.21227/H2H01C

https://dx.doi.org/10.21227/H2H01C
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Content creation: tube-content extraction
To select tube-contents, we followed these steps:

- Step 2: Extraction of tube-contents aligned on the motion: tube size = a PU (64x64px, 400ms)
- A tube-content: a reference tube and 31 distorted version of it from PVS
- 100K tube-contents extracted from the 115 SRCs
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https://docs.google.com/file/d/1HyyT5ZdUjt6Q-hTg1T55xcnUd0Oy4GSj/preview


Clustering of tube-contents
To select tube-contents, we followed these steps:

- Step 3: Clustering of the 100K tube-contents from the response of quality metrics. 
- Quality metrics used: VMAF, SSIM, PSNR, LPIPS
- Feature extraction from the relation (red line) in all pairs of quality metrics (slope, intercept, 

error)
- 96 clusters are learned with K-Means
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Tube-contents selection for subjective evaluation
To select tube-contents, we followed these steps:

- Final step: 268 tube-contents (2+ per cluster) sampled. 
- Per tube-content: 6 distortion levels out of the 31 available are selected using VMAF 

- VMAF as a fidelity proxy for distortion level spacing selection (DVMAF = 100 - VMAF)
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Tube-contents selection for subjective evaluation
To select tube-contents, we followed these steps:

- Final step: 268 tube-contents (2+ per cluster) sampled. 
- Per tube-content: 6 distortion levels out of the 31 available are selected using VMAF 

- VMAF as a fidelity proxy for distortion level spacing selection (DVMAF = 100 - VMAF)



Example of tube-contents and distortion levels?
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https://docs.google.com/file/d/1Mf6mP4PWJZLmoFcYr7v9a0F-P6yasYAj/preview


Ref PU

Not noticeable distortion (d = 0)

Noticeable distortion (d > 0)

Very noticeable distortion (d >> 0)

What kind of subjective data are we trying to collect on a PU?

A fidelity loss evaluation: How much distortions the human eyes can perceive 
between a reference PU and an encoded/compressed/distorted version of it?
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Ref PU

Not noticeable distortion (d = 0)

Noticeable distortion (d > 0)

Very noticeable distortion (d >> 0)

Increasing distortion level (encoding strength)

Perceptual distance
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What kind of subjective data are we trying to collect on a PU?

A fidelity loss evaluation: How much distortions the human eyes can perceive 
between a reference PU and an encoded/compressed/distorted version of it?
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Collecting Ground Truth Efficiently

● Available subjective methodologies:
○ Pairwise comparison, (with boosting strategies as ARD, Hybrid-MST[1], ASAP[2] …)
○ Quadruplets, triplets, 2-AFC, … with boosting strategies AFAD[3]

● From subjective judgments to perceptual continuum:
○ Bradley-Terry, Thurstonian models, …
○ Maximum Likelihood Difference Scaling MLDS[4] solvers

[1] Li, J., Mantiuk, R., Wang, J., Ling, S., & Le Callet, P. (2018). Hybrid-MST: A hybrid active sampling strategy for pairwise preference aggregation. Advances in 
neural information processing systems, 31.
[2] Mikhailiuk, A., Wilmot, C., Perez-Ortiz, M., Yue, D., & Mantiuk, R. K. (2021, January). Active sampling for pairwise comparisons via approximate message 
passing and information gain maximization. In 2020 25th International Conference on Pattern Recognition (ICPR) (pp. 2559-2566). IEEE.
[3] A. Pastor, L. Krasula, X. Zhu, Z. Li and P. Le Callet, "Improving Maximum Likelihood Difference Scaling Method To Measure Inter Content Scale, 2022 IEEE 
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2045-2049, doi: 10.1109/ICASSP43922.2022.9746681.
[4] Knoblauch, K., & Maloney, L. T. (2008). MLDS: Maximum likelihood difference scaling in R. Journal of Statistical Software, 25, 1-26.

27



Quadruplet “intra” and “inter-content” comparison

- Participants perform subjective annotations on “intra” and “inter-content” quadruplets
- 50 000 judgments collected, 25 000 “intra” and 25 000 “inter” from naïves observers
- Experiment in crowdsourcing and observers annotated 40 quadruplets per session (~7min)
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Where do you perceive a greater 
difference between the lower two and 

the upper two patches?

Where do you perceive a greater 
difference between the lower two and 

the upper two patches?

“INTRA” “INTER”



Example of PD–MSE curves obtained

Here, the 54 PD–MSE curves in 
the test set of dataset (20%):

- MSE distortion on X-axis
- subjective perceptual 

difference from observers 
on Y-axis
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Example of under and over estimated distortions if we use MSE_Y as a PD predictor
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Per tube weighting of MSE from Deep Semantic 
Features
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PD-curve modelisation, proposed model, training and performances



- step 0: model PD–MSE curves
- step 1: extract deep learning features from references tubes
- step 2: perform dimensionality reduction with PCA
- step 3: use SVM from topK PCA features pooling and predict PD-curves 

slopes

proposed model for PD–MSE curve prediction
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Step 0: modeling of  PD–MSE curves 

Use prior knowledge to simplify and 
model PD–MSE curves with linear 
function (orange) or exp function (green)

Train models to predict linA, and expA + 
expB
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Step 1: extract Deep Learning features from reference tubes

- Why extract DL features from reference tubes only?
- as we aim to correct MSE, a cheap statistic available during encoding

- Process for each reference tube:
- pass each frame patch in Neural Network backbone (AlexNet, VGG, …)
- get each layer filter activation
- average them along spatial dimension
- then compute temporal average and temporal std
- obtain finally 2 vectors of 1152 features (AlexNet) per reference tube

- Perform the operation over the 100K tubes of the database
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Step 2: perform dimensionality reduction with PCA 

Goal: reduce 1152 features vectors to K 
features to ease model training on limited 
data

Use PCA to learn a projection from extracted 
features from 100K unlabeled tube-contents

Use the learned projection to extract top K 
Principal Components of train set features
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Training options
Learn SVM pooling to 
predict a subjective score 
for content i, distortion j:

→ MSE_Y → MSE_Y
→ MSE_Y

Learn SVM pooling to 
predict slope of linear fitting

Learn 2 SVMs to predict a,b 
coeff of exp fitting:

No constraint Add our prior knowledge
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Performance of all metrics on test set

Comparison with Full Reference 
metric (classic and Deep Learning 
based) and “Reference-only/MSE 
corrector” metrics

Prior modeling of the PD–MSE 
curves increases performances
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Conclusion

- Human perception is important to drive encoding algorithms (AV1, …)
- Creation of a dataset of 268 tube-contents with inter-content scaling
- Benchmark of existing quality metrics
- Creation of a metric to correct MSE
- Ongoing next steps:

- Perceptually tuned Rate Distortion Optimization in libaom
- going from local to global video scale distortion prediction
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