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Fixed Bitrate Ladder
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Per-title encoding schemes design a convex hull tailored for each
video, containing optimal bitrate-resolution pairs that display the
highest visual quality at the target bitrate.

The convex hull is where the encoding point achieves Pareto
efficiency.

The main disadvantage of this approach is the requirement for
significant computation resources and time.

[1] https://netflixtechblog.com/per-title-encode-optimization-7€99442b62a2

[2] https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19fle3a277f
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Previous Works
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Gaussian Processes
PSNR GLCM, TC j 0.1801 3]
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PSNR | GLCM, TC, RsMSE _ 0.18M1 [
Regression
Gaussian P
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Regression
Ladder - -
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bitstream-features, GLCM SVR
VMAF | Sobel(Y), Y, YDiff, U, V Random-Forest 0.08-0.14
VMAF | Video Neural Network - 9
: 4.76-
VMAF | Video-Chunk Conv-GRU [19]
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Predicting Cross-Over Points
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*  Cross-Over points are defined as intersection points between RQ curves of
different resolutions where switching happens low-resolution to higher
resolution.

* They are defined as either a pair of QPs i.e one for each resolution or as a cross-
over bitrate.

*  These cross-over points are predicted using low-level features like Low-level
features like GLCM, TC, NCC, etc extracted from uncompressed videos and are
used to construct bitrate ladders.

[1]: Angeliki V. Katsenou, Joel Sole, and David R. Bull, “Efficient bitrate ladder construction for content-optimized adaptive
video streaming,” IEEE Open Journal of Signal Processing, vol. 2, pp. 496-511, 2021.

[2]: Ahmed Telili, Wassim Hamidouche, Sid Ahmed Fezza, and Luce Morin, “Benchmarking learning-based bitrate ladder
prediction methods for adaptive video streaming,” in Picture Coding Symposium, PCS 2022, San Jose, CA, USA, December 7-9,
2022. 2022, pp. 325-329, IEEE.
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Predicting Quality or Optimal Resolution
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[2] Vignesh V. Menon, Jingwen Zhu, Prajit T. Rajendran, Hadi Amirpour, Patrick Le Callet, and Christian
Timmerer, “Just noticeable difference-aware per-scene bitrate-laddering for adaptive video
streaming,” CoRR, vol. abs/2305.00225, 2023.
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Name: BVT-100 4K

Authors: M. Afonso, A. Katsenou, F. Zhang, and D. R. Bull

100 UHD video sequences downloaded from various public sources like Netflix Chimera,
Ultra Video Group, Harmonic Inc, SJITU and AWS Elemental.

All the sequences were spatially cropped to UHD (if originally 4K resolution, 4096 x 2160
pixels), converted to 4:2:0 chroma subsampling (if originally 4:2:2 or 4:4:4) and
temporally cropped to 64 frames.

Each sequence contains a single scene (without scene cuts) and the majority of the test

sequences have a frame rate of 60 fps and bit depth of 10 bits per sample.

Experimental-Setup:

The videos are compressed using libx265 codec with the encoder preset set to medium.

Resolutions of compressed videos are set to the following values {3860 x 2160, 1920 x 1080, 1280 % 720, 960 % 540, 768 % 432, 640 % 360} which almost have a
similar aspect ratio of 16 : 9.

The encoding is performed using constant-quality/CRF settings with the following CRF values
{16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,37,39,41}.

We estimated VMAF for each of the compressed video assuming that videos are viewed on a 4K screen.

In our experiments, we consider rate-quality points that have a minimum VMAF value of 10 and maximum VMAF value of 95.
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Our Approach

Feature Set Number

Features Set

No.of Features

1 I.[F}] 4
2 I »[F] 8
3 I [F] 72
4 5
5 I u[F3), | Dil 9
6 I ,[F, |Dil 73
7 It[F)), |D;|, Ix[D;) 9
8 Ii s [Fi, | Dy, Ir p[Di] 17
9 Ig,b[Fi]v |D2| Ii,b[Di] 145
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Performance Comparisons:

We compare the performance against Apple’s fixed
bitrate ladder and reference bitrate ladder
constructed using exhaustive encoding.

Our Approach:

*  Bitrate Ladder constructed by predicting quality
using VIF feature sets

*  Bitrate Ladder constructed by predicting using
Low-Level features and VIF feature sets

Comparisons:

* Bitrate Ladder constructed by predicting Cross-
Over Bitrates using Low-level features

* Bitrate Ladder constructed using by predicting
quality using Low-level features.

WHAT STARTS HERE CHANGES THE WORLD

No.of No.o'f
Feature Formula Spatial Spatio-
Features Temporal
Features

Fy{Fi{correlation(GLCM)}}, Fy{F1{homogeneity(GLCM)}},

GLCM Fy{Fi{contrast(GLCM)}}, F{Fi{energy(GLCM)}} where GLCM 8 3
is calculated on blocks of size (64,64), Fi = {mean,std} and
F, = {mean, std, skew, kurtosis}

TC Fy{Fi{Coherence}} where F; = {mean, std, skew, kurtosis} and F, = . 8
{mean, std}

g F{F1{Sobel(Y)}} where F; = {mean, std} and F, =, 8
{mean, std, skew, kurtosis}

- B{FR{(Y> — Y1)}} where F; = {mean,std} and F, = ) 8
{mean, std, skew, kurtosis}

CTI EF>{F1{Y}} where F; = {mean, std} and F» = {mean, std, skew, kurtosis} | 2

CF E,{(YUV)} where Fy = {mean, std, skew, kurtosis} 1

a FE{F{U}}, Fo{Wg x F1{V}} where Wg =5, F; = {mean, std} and F; = 4 16
{mean, std, skew, kurtosis}

Texture- F2{EY}, Fz{hy}, Fz{Ly}, F2{EU}, F2{hU}, Fz{LU}, Fz{Ev}, Fz{hv}, 9 9

DCT Fy{Ly} where F», = {mean}

Total 32 93

10
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Results

Features Set

BL vs Fixed Bitrate Ladder

BL vs Reference Bitrate Ladder

BD-Rate (in %)

BD-VMAF (in dB)

BD-Rate (in %)

BD-VMAF (in dB)

WHAT STARTS HERE CHANGES THE WORLD

Feature-Set-1, b, 5%, 75 —11.045/17.688  2.978/4.112 0.505/0.465 -1.107/1.34
Feature-Set-2, b, %5, 75 —10.809/17.578  2.967/4.159 0.525/0.534 —1.135/1.509
Feature-Set-3, b, 5245, 55 —12.995/18.043  3.748/3.848 0.355/0.461 —0.495/1.019
Feature-Set-4, 725, zas —12.972/16.069  3.399/3.872 0.367/0.35 —0.741/1.07
Feature-Set-5, b, 5245, 5e5 —13.12/15.783  3.499/3.776 0.379/0.34 —0.692/1.09
Feature-Set-6, b, 3245, za5 —13.259/17.967  3.756/3.776 0.378/0.459 —0.506,/1.036
Feature-Set-7, b, 3%, = —12.757/15.208  3.427/3.7 0.454/0.464 —0.709/1.184
Feature-Set-8, b, 3%, 75 —10.943/17.208  2.997/4.06 0.516/0.521 —1.069/1.367
Feature-Set-9, b, 3%, 75 —10.417/17.466  3.065/3.607 0.605/0.693 —0.931/1.174
Low-Level-Features, Feature-Set-1,

. —14.597/12.24  3.606/3.08 0.26/0.338 —0.688/1.054
b 3100 380
Low-Level-Features, Feature-Set-2,

. —15.795/12.685  4.088/3.239 0.188/0.262 —0.28/0.82
b #ir w0
Low-Level-Features, Feature-Set-3,

. —16.245/12.825  4.231/3.275 0.126/0.251 —0.073/0.75
b, %150 3810

- |- -
"“’UW "e‘,’f Features, Feature-Set-4. | 1, 713/10.95  3.588/2.695 0.285/0.436 —0.724/1.153
3840" 3840
Low-Level-Features, Feature-Set-5,

. —15.214/12.625  3.873/3.144 0.212/0.321 —0.434/1.094
b ®i w0
Low-Level-Features, Feature-Set-6,

. —14.649/16.074  4.118/3.397 0.214/0.416 —0.233/0.832
b ®ir w0
Low-Level-Features, Feature-Set-7,

. —14.047/10.42  3.458/2.543 0.34/0.505 —0.827/1.272
b 55 w0
Low-Level-Features, Feature-Set-8,

. —14.685/16.199  4.141/3.398 0.231/0.41 —0.192/0.795
b w1 w0
Low-Level-Features, Feature-Set-9,

o h —14.883/16.626  4.174/3.548 0.196,/0.419 —0.134/0.866
b &1 w0
Low-Level-Features, b, 35, 707 | —13.042/15.417  3.468/3.629 0.416/0.38 —0.601,/0.991
Low-Level-Features (Cross-Over bi-

—16.838/14.388  4.275/3.865 0.037/0.156 —0.102/0.699

rates)

1
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Pareto-Fronts for bosphorus_3840x2160_10bit_420_120fps_frames1-64

Pareto-Fronts for mobile_3840x2160_10bit_420_60fps_frames1-64
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Future Works: e
. Improving the performance of models. 5222
. Exploring more bitrate ladder correction o
algorithms. -
. Developing a robust evaluation metrics for .
different methods .
Bitrate (in kbps) | Resolution Bitrate (in kbps) | Resolution
10500 (3840, 2160) 10500 (3840, 2160)
9000 (3840, 2160) 9000 (3840, 2160)
8000 (3840, 2160) 8000 (3840, 2160)
7000 (3840, 2160) 7000 (3840, 2160)
6000 (1920, 1080) 6000 (1920, 1080)
5000 (3840, 2160) 5000 (1920, 1080)
4000 (2560, 1440) 4000 (1920, 1080)
3000 (2560, 1440) 3000 (1920, 1080)
2000 (1920, 1080) 2000 (1920, 1080)
1000 (1920, 1080) 1000 (1920, 1080)
500 (768, 432) 500 (768, 432)
250 (960, 540) 250 (768, 432)

BD-Rate wrt Fixed BL mean=-11.716, std = 9.794

BD-VMAF wrt Fixed BL mean=2.605, std = 2.369

BD-Rate wrt Fixed BL mean=5.085, std = 42.606

BD-VMAF wrt Fixed BL mean=1.249, std = 4.269

il

-50 -40 -30 -20 -10 0 10 20
BD-Rate wrt Reference BL mean=0.561, std = 0.624

25 00 25 50 75 100 125

BD-VMAF wrt Reference BL mean=-2.082, std = 2.223

-1 0 1 2 3

0
-125

-100 -7.5

RQ Curves

(a) Predicted Bitrate Ladder before correctio (b) Predicted Bitrate Ladder after correction

log; (Bitrate)

0.020
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0.005

0.000
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BD-Rate wrt Reference BL mean=1.467, std = 1.529

-10 -5 0 5 10 15 20
D-VMAF wrt Reference BL mean=-2.186, std = 1.688

log; (Bitrate)
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