

### Politecnico di Torino

## **Multiple Image Distortion DNN Modeling Individual Subject Quality Assessment**

### LOHIC FOTIO TIOTSOP **JEG-HYBRID GROUP**

**VQEG MEETING: JULY 2024** 

VQEG JEG-Hybrid 2024 108

L Fotio

# **Artificial Intelligence-Based Observers: AIOs**

- Training a Deep Neural Network (DNN) to mimic individual quality perception is a recent direction
- These DNNs are called Artificial Intelligence-based Observers (AIOs)
- An AIO outputs a five-class probability distribution on the five-point ACR scale
- Aim and scope: designing media processing systems that account for the characteristics of the targeted audience
  - Going beyond MOS and SOS
  - Toward users' characteristics-aware rendering systems

### Learning task with noisy labels:

- Individual opinion scores are noisier than the MOS Need for complex models and large number of training samples

### • Limited number of training samples:

- Difficult to gather a very large number of opinion scores from the same subject
- This hinders the model's capacity to make inference accurately
- Mitigation strategies:
  - Transfer learning
  - Data augmentation
- We have introduced a training approach named "human in the loop"

## Human in the Loop Training (HLT) of DNN-based AIOs

- Placing the subject in an iterative procedure to derive their AIO 1. Pretrain a DNN with many hidden convolutional layers on a synthetically annotated large-scale dataset
  - 2. Ask the subject to rate a selected set of stimuli (typically no more than 500) **3. Continue the training of the pretrained DNN** using the collected opinion
  - scores.
  - 4. Use the obtained DNN to make inference on a large-scale dataset. 5. Select a new set of stimuli for the subject to rate, specifically those with DNN-predicted quality prone to **high uncertainty**. Return to step 2 with the
  - newly selected stimuli
- The DNN obtained at the last iteration represents the subject's AIO

# The Multi-Distortion ResNet50 (MDResNet50)

- Step 1 of HLT: We pretrained a DNN named MDResNet50 on a synthetically annotated dataset
- The created synthetically annotated dataset includes 2 million images 100 000 high quality images were selected from the ImageNet dataset 5 different levels of blur, noise, JPEG and JPEG2K compression were

  - applied to each image
  - This yielded 2 million images, the quality of each annotated by the corresponding level of distortion
- We trained the MDResNet50 to recognize the five levels of impairment for all the four considered distortions Table 1. Rules to synthetically annotate distorted images.
  - Network architecture: that of the ResNet50
  - Initial weights: those of the ResNet50



### **MDResNet50 vs ResNet50**

 The MDResNet50 should be a better starting point for transfer leaning in image quality assessment tasks



Fig. 12. 2D t-SNE maps of the features extracted by the ResNet50 (left) and the MDResNet50 (right). It can be noticed that the MDResNet50 better distinguishes among the different image distortions.

#### **L** Fotio

### VQEG JEG-Hybrid 2024 108



6

## From the MDResNet50 to AlOs

- In [1] we applied three iterations of HLT, creating and releasing a new subjectively annotated datasets as well as 5 AlOs.
- In [2] a single iteration of HLT was applied using existing datasets to train 19 AlOs
  - Impossible to do more than one iteration as modelled subjects were unknown

[1] Majer, Pavel; Fotio Tiotsop, Lohic and Borkowski, Marcus. "Training the DNN of a Single Observer by **Conducting Individualized Subjective Experiments**." In 2023 15th International Conference on Quality of Multimedia Experience (QoMEX), pp. 103-106. IEEE, 2023

[2] Fotio Tiotsop, Lohic; Servetti, Antonio; Pocta, Peter; Van Wallendael, Glenn; Barkowsky, Marcus and Masala, Enrico. "Multiple Image Distortion DNN Modeling Individual Subject Quality Assessment." ACM Transactions on Multimedia Computing, Communications and Applications (2024)

### **Some Results**

L Fotio

VQEG\_JEG-Hybrid\_2024\_108

## **Trained AlOs Accuracy**

• The predicted opinion scores by AIOs correlate with the MOS as good as the opinion scores of the mimicked subjects in many testing conditions

Table 3. The Spearman Rank Order Correlation Coefficient (SROCC) between the opinion scores of each one of the mimicked real subjects and the MOS on the training set, i.e., the MD-LIVE-IQA dataset.

| Subjects | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   |
|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| SROCC    | 0.84 | 0.82 | 0.91 | 0.83 | 0.88 | 0.88 | 0.83 | 0.83 | 0.84 | 0.87 | 0.85 | 0.93 | 0.85 | 0.60 | 0.85 | 0.81 | 0.93 | 0.84 | 0.82 |

| $ \begin{array}{c} 1 \\ 0.84 \\ 0.62 \\ 0.76 \\ 0.89 \\ 0.78 \\ 0.82 \\ 0.87 \\ 0.86 \\ 0.81 \\ 0.76 \\ 0.81 \\ 0.82 \\ 0.76 \\ 0.81 \\ 0.83 \\ 0.89 \\ 0.76 \\ 0.81 \\ 0.83 \\ 0.89 \\ 0.76 \\ 0.81 \\ 0.83 \\ 0.89 \\ 0.76 \\ 0.81 \\ 0.83 \\ 0.89 \\ 0.76 \\ 0.81 \\ 0.82 \\ 0.83 \\ 0.89 \\ 0.87 \\ 0.86 \\ 0.81 \\ 0.82 \\ 0.83 \\ 0.89 \\ 0.76 \\ 0.81 \\ 0.82 \\ 0.83 \\ 0.89 \\ 0.77 \\ 0.86 \\ 0.89 \\ 0.72 \\ 0.86 \\ 0.83 \\ 0.87 \\ 0.86 \\ 0.83 \\ 0.87 \\ 0.86 \\ 0.83 \\ 0.87 \\ 0.86 \\ 0.83 \\ 0.87 \\ 0.86 \\ 0.81 \\ 0.77 \\ 0.86 \\ 0.88 \\ 0.77 \\ 0.86 \\ 0.88 \\ 0.77 \\ 0.86 \\ 0.88 \\ 0.77 \\ 0.86 \\ 0.88 \\ 0.77 \\ 0.86 \\ 0.88 \\ 0.77 \\ 0.86 \\ 0.88 \\ 0.77 \\ 0.86 \\ 0.88 \\ 0.77 \\ 0.86 \\ 0.88 \\ 0.77 \\ 0.86 \\ 0.88 \\ 0.77 \\ 0.86 \\ 0.88 \\ 0.77 \\ 0.86 \\ 0.88 \\ 0.77 \\ 0.86 \\ 0.88 \\ 0.77 \\ 0.8 \\ 0.88 \\ 0.77 \\ 0.8 \\ 0.88 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.78 \\ 0.8 \\ 0.78 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.78 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.79 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.78 \\ 0.8 \\ 0.76 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.8 \\ 0.77 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0$ |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |   |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---|-----|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.84 | 0.62 | 0.76 | 0.82 | 0.8  | 0.79 | 0.55 | 0.66 | 0.61 | 0.53 | 0.44 | 0.82 | 0.71 | 0.81 | 0.71 |   | 0.9 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.89 | 0.78 | 0.82 | 0.87 | 0.88 | 0.88 | 0.82 | 0.38 | 0.74 | 0.76 | 0.73 | 0.86 | 0.85 | 0.78 | 0.83 |   |     |
| $ \begin{array}{c} 4 & 0.86 & 0.71 & 0.8 & 0.85 & 0.82 & 0.83 & 0.69 & 0.64 & 0.65 & 0.62 & 0.55 & 0.83 & 0.78 & 0.82 & 0.73 \\ 5 & 0.9 & 0.72 & 0.81 & 0.87 & 0.87 & 0.84 & 0.76 & 0.45 & 0.76 & 0.73 & 0.69 & 0.85 & 0.83 & 0.79 & 0.8 \\ 6 & 0.9 & 0.74 & 0.84 & 0.86 & 0.87 & 0.85 & 0.77 & 0.61 & 0.69 & 0.67 & 0.65 & 0.86 & 0.83 & 0.85 & 0.83 \\ 7 & 0.86 & 0.68 & 0.83 & 0.8 & 0.85 & 0.85 & 0.76 & 0.76 & 0.66 & 0.48 & 0.32 & 0.64 & 0.84 & 0.66 \\ 9 & 0.84 & 0.49 & 0.78 & 0.78 & 0.79 & 0.74 & 0.82 & 0.3 & 0.68 & 0.76 & 0.72 & 0.81 & 0.8 & 0.61 & 0.78 \\ 9 & 0.84 & 0.49 & 0.78 & 0.78 & 0.79 & 0.74 & 0.82 & 0.3 & 0.68 & 0.76 & 0.72 & 0.81 & 0.8 & 0.61 & 0.78 \\ 9 & 0.84 & 0.49 & 0.78 & 0.78 & 0.79 & 0.74 & 0.82 & 0.3 & 0.68 & 0.76 & 0.72 & 0.81 & 0.8 & 0.61 & 0.78 \\ 10 & 0.89 & 0.77 & 0.78 & 0.86 & 0.82 & 0.76 & 0.67 & 0.5 & 0.76 & 0.64 & 0.69 & 0.81 & 0.78 & 0.76 & 0.82 \\ 12 & 0.86 & 0.69 & 0.82 & 0.82 & 0.79 & 0.82 & 0.66 & 0.74 & 0.65 & 0.57 & 0.83 & 0.8 & 0.78 \\ 14 & 0.86 & 0.69 & 0.82 & 0.82 & 0.82 & 0.83 & 0.69 & 0.54 & 0.67 & 0.65 & 0.57 & 0.83 & 0.8 & 0.74 \\ 15 & 0.88 & 0.73 & 0.78 & 0.85 & 0.81 & 0.83 & 0.79 & 0.62 & 0.7 & 0.67 & 0.58 & 0.83 & 0.79 & 0.86 & 0.74 \\ 15 & 0.88 & 0.73 & 0.78 & 0.85 & 0.81 & 0.83 & 0.7 & 0.62 & 0.7 & 0.67 & 0.58 & 0.83 & 0.79 & 0.86 & 0.74 \\ 16 & 0.86 & 0.69 & 0.79 & 0.83 & 0.82 & 0.83 & 0.7 & 0.62 & 0.7 & 0.67 & 0.58 & 0.83 & 0.79 & 0.86 & 0.74 \\ 16 & 0.86 & 0.74 & 0.8 & 0.83 & 0.82 & 0.83 & 0.7 & 0.62 & 0.7 & 0.67 & 0.58 & 0.83 & 0.79 & 0.86 & 0.74 \\ 16 & 0.86 & 0.74 & 0.8 & 0.83 & 0.82 & 0.83 & 0.7 & 0.62 & 0.61 & 0.47 & 0.84 & 0.72 & 0.8 & 0.8 \\ 18 & 0.86 & 0.74 & 0.8 & 0.83 & 0.82 & 0.83 & 0.71 & 0.66 & 0.64 & 0.47 & 0.84 & 0.77 & 0.86 & 0.79 \\ 19 & 0.88 & 0.7 & 0.82 & 0.81 & 0.81 & 0.7 & 0.66 & 0.68 & 0.61 & 0.46 & 0.79 & 0.86 & 0.77 \\ 19 & 0.88 & 0.7 & 0.82 & 0.81 & 0.86 & 0.74 & 0.74 & 0.65 & 0.7 & 0.68 & 0.61 & 0.86 & 0.79 & 0.86 & 0.77 \\ 19 & 0.88 & 0.7 & 0.82 & 0.81 & 0.86 & 0.74 & 0.74 & 0.65 & 0.7 & 0.68 & 0.61 & 0.86 & 0.79 & 0.86 & 0.77 \\ 19 & 0.88 & 0.7 & 0.82 & 0.81 & 0.86 & 0.74 $                                                                                                                                                                                                                                                                                                     |   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9  | 0.76 | 0.81 | 0.83 | 0.89 | 0.87 | 0.82 | 0.43 | 0.66 | 0.79 | 0.67 | 0.84 | 0.74 | 0.56 | 0.82 |   |     |
| $ \int_{0}^{5} 0.9  0.72  0.81  0.87  0.87  0.84  0.76  0.45  0.76  0.73  0.69  0.85  0.83  0.79  0.8 \\ 0.9  0.74  0.84  0.86  0.87  0.85  0.77  0.61  0.69  0.67  0.65  0.86  0.83  0.85  0.83 \\ 0.89  0.75  0.79  0.8  0.81  0.77  0.65  0.36  0.61  0.6  0.6  0.81  0.79  0.8 \\ 0.89  0.75  0.79  0.8  0.81  0.77  0.65  0.56  0.66  0.48  0.32  0.82  0.64  0.84  0.66 \\ 9  0.84  0.49  0.78  0.78  0.79  0.74  0.82  0.3  0.68  0.76  0.72  0.81  0.8  0.61  0.78 \\ 0.89  0.77  0.78  0.86  0.82  0.76  0.67  0.5  0.76  0.64  0.69  0.85  0.77  0.82  0.71 \\ 10  0.89  0.77  0.78  0.86  0.82  0.76  0.67  0.5  0.76  0.64  0.69  0.85  0.77  0.82  0.71 \\ 11  0.85  0.8  0.85  0.8  0.82  0.76  0.67  0.5  0.67  0.69  0.81  0.78  0.76  0.82 \\ 11  0.85  0.8  0.83  0.85  0.83  0.85  0.73  0.6  0.62  0.67  0.69  0.81  0.78  0.76  0.82 \\ 11  0.85  0.8  0.83  0.82  0.82  0.76  0.64  0.69  0.85  0.77  0.83  0.8  0.79 \\ 13  0.87  0.66  0.8  0.84  0.82  0.83  0.69  0.54  0.67  0.55  0.57  0.83  0.8  0.74 \\ 15  0.88  0.73  0.78  0.85  0.81  0.83  0.79  0.62  0.7  0.67  0.58  0.83  0.79  0.8  0.74 \\ 16  0.86  0.69  0.77  0.83  0.83  0.82  0.8  0.77  0.66  0.64  0.64  0.64  0.64  0.77  0.84  0.72  0.8  0.74 \\ 16  0.86  0.69  0.77  0.83  0.83  0.82  0.83  0.71  0.66  0.64  0.64  0.64  0.64  0.77  0.84  0.72  0.8  0.8 \\ 0.74  16  0.86  0.74  0.8  0.83  0.82  0.83  0.71  0.66  0.64  0.64  0.64  0.64  0.77  0.86  0.74 \\ 0.8  0.77  0.8  0.83  0.82  0.8  0.77  0.66  0.64  0.64  0.64  0.64  0.77  0.86  0.77 \\ 0.8  0.7  0.8  0.77  0.8  0.8  0.77  0.8  0.7 \\ 0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7 \\ 0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0.8  0.7  0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.86 | 0.71 | 0.8  | 0.85 | 0.82 | 0.83 | 0.69 | 0.64 | 0.65 | 0.62 | 0.55 | 0.83 | 0.78 | 0.82 | 0.73 |   | 0.8 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9  | 0.72 | 0.81 | 0.87 | 0.87 | 0.84 | 0.76 | 0.45 | 0.76 | 0.73 | 0.69 | 0.85 | 0.83 | 0.79 | 0.8  |   |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9  | 0.74 | 0.84 | 0.86 | 0.87 | 0.85 | 0.77 | 0.61 | 0.69 | 0.67 | 0.65 | 0.86 | 0.83 | 0.85 | 0.83 |   | 07  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.86 | 0.68 | 0.83 | 0.8  | 0.85 | 0.85 | 0.76 | 0.36 | 0.61 | 0.6  | 0.6  | 0.81 | 0.79 | 0.81 | 0.81 |   | 0.7 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.89 | 0.75 | 0.79 | 0.8  | 0.81 | 0.77 | 0.65 | 0.56 | 0.66 | 0.48 | 0.32 | 0.82 | 0.64 | 0.84 | 0.66 |   |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~ | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.84 | 0.49 | 0.78 | 0.78 | 0.79 | 0.74 | 0.82 | 0.3  | 0.68 | 0.76 | 0.72 | 0.81 | 0.8  | 0.61 | 0.78 | - | 0.6 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ő | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.89 | 0.77 | 0.78 | 0.86 | 0.82 | 0.76 | 0.67 | 0.5  | 0.76 | 0.64 | 0.69 | 0.85 | 0.77 | 0.82 | 0.71 |   |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.85 | 0.8  | 0.85 | 0.8  | 0.83 | 0.85 | 0.73 | 0.6  | 0.62 | 0.67 | 0.69 | 0.81 | 0.78 | 0.76 | 0.82 |   | ~ - |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.86 | 0.69 | 0.82 | 0.82 | 0.79 | 0.82 | 0.66 | 0.17 | 0.58 | 0.59 | 0.47 | 0.82 | 0.72 | 0.68 | 0.79 |   | 0.5 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.87 | 0.66 | 0.8  | 0.84 | 0.82 | 0.83 | 0.69 | 0.54 | 0.67 | 0.65 | 0.57 | 0.83 | 0.8  | 0.8  | 0.78 |   |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.86 | 0.68 | 0.69 | 0.83 | 0.82 | 0.8  | 0.59 | 0.64 | 0.79 | 0.62 | 0.62 | 0.84 | 0.75 | 0.81 | 0.61 |   | 0.4 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.88 | 0.73 | 0.78 | 0.85 | 0.81 | 0.83 | 0.7  | 0.62 | 0.7  | 0.67 | 0.58 | 0.83 | 0.79 | 0.86 | 0.74 |   |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.86 | 0.69 | 0.79 | 0.83 | 0.81 | 0.82 | 0.69 | 0.66 | 0.64 | 0.62 | 0.51 | 0.83 | 0.76 | 0.82 | 0.76 |   |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.89 | 0.77 | 0.83 | 0.83 | 0.82 | 0.8  | 0.67 | 0.42 | 0.56 | 0.61 | 0.47 | 0.84 | 0.72 | 0.8  | 0.8  |   | 0.3 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.86 | 0.74 | 0.8  | 0.83 | 0.82 | 0.83 | 0.71 | 0.6  | 0.57 | 0.61 | 0.51 | 0.84 | 0.77 | 0.86 | 0.79 |   |     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.88 | 0.7  | 0.8  | 0.82 | 0.84 | 0.81 | 0.7  | 0.66 | 0.68 | 0.64 | 0.47 | 0.85 | 0.7  | 0.83 | 0.76 |   | 0.0 |
| CSIQ-JPEG NOISE BLUR JP2K JPEG JP2K BLUR NOISE JPEG BLUR JP2K JPEG JP2K NOISE BLUR CSIQ-NCSIQ-CSIQ-CSIQ-D2013-JP2013-NOISE JUR VCL-FER-JPEG BLUR LIVE-R2-JP2K NOISE BLUR TID2013-JP2013-NOISE VCL-FER-JPEG LIVE-R2-JP2K LIVE-R2-JP2K NOISE BLUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N | IOS-AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.92 | 0.75 | 0.82 | 0.81 | 0.86 | 0.74 | 0.74 | 0.65 | 0.7  | 0.68 | 0.61 | 0.86 | 0.79 | 0.86 | 0.77 |   | 0.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | CSIQ-JPEG NOISE BLUP JP2K JPEG JP2K BLUP NOISE JPEG BLUP JP2K JPEG JP2K NOISE BLUP CSIQ-NCSIQ-SIQ-DCSIQ-JP2K JPEG CSIQ-JP2K JPEG JP2K JPEG LVE-R2-JPEG LVE |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |   |     |

Dataset and Distortion

Fig. 6. The SROCC between the prediction of each AIO and the MOS for the different datasets and distortions.

### VQEG JEG-Hybrid 2024 108

#### **L** Fotio

# **AlOs Mimic Subjects' Bias and Inconsistency**

- We simulated the ratings of a subject with specific bias and inconsistency
- We used the scoring model:  $u_{ij} = \psi_i + \Delta_i + N(0, v_i)$ , implemented in Sureal

  - The MOS of each image was considered as an estimate of its ground truth quality Values of bias were uniformly chosen in the range [-1 1]
  - Values of inconsistency were uniformly chosen in the range [0.25 1]

### The AIO of a subject with a specific bias and inconsistency was then trained

- The AIO bias is measured as the average deviation of its opinion scores from the MOS of the AlOs
- The AIO inconsistency is measured as the average of the variances of its predictions (variance of the softmax layer)

### **AIOs Bias vs Ground Truth Bias**



#### **L** Fotio

#### VQEG\_JEG-Hybrid\_2024\_108

 Whatever is a subject's inconsistency, their AIO mimics their expectation in terms of quality (measured in terms of bias).

### **AIOs Inconsistency vs Ground Truth Inconsistency**



- The average variance of the softmax layer of an AIO is correlated with the subject's inconsistency
- Thus, the model's confidence is correlated to the subject scoring accuracy, this does not happen in most of the computer vision tasks

### **Do AlOs Mimic More than Bias and Inconsistency?**

### Next steps:

- Evaluating through simulation and real data whether AIOs mimic content preference
  - e.g. putting bias on specific ratings, rather than adding a permanent bias
  - running subjective texts that include amongst stimuli, pictures on activities that are of high interest for each participant
- Evaluating whether an AIO mimics the perception of aesthetics of the related subject
  - e.g. does my AIO see blur as an aesthetic artifact, when I do ?

# **AIOs Sensitivity to Colour Saturation**

• **Reasonable assumption:** an accurate subject asked to assess the disturbance of artifacts caused by noise, blur, JPEG, and JPEG2K compression would assign very similar opinion scores to images (a) to (e) in a single stimulus test.



(a) perc=80%

(b) perc=60%

Fig. 9. Visual effect of the color saturation reduction applied to the images in our sensitivity analysis. The modification is measured in terms of the percentage of the remaining color saturation with respect to the original image. We expect that a subject tasked to rate distortion caused by noise, blur, JPEG and JPEG 2000 compression does not perceive a significant difference in the image quality when moving from (a) to (e).

#### L Fotio



(e) perc=0%

<sup>(</sup>c) perc = 40%

# **AIOs Sensitivity to Colour Saturation**

The integration of the **aforementioned assumption**, through **data** augmentation, yielded AlOs with a sensitivity to colour saturation that more resembles that of a human observer



Fig. 11. The average perceived quality by the state-of-the-art AIOs published in [53] (left) and the proposed AIOs (right) as a function of the percentage of the color saturation of the input image. Each plot (excluding the one labeled as "AVG") corresponds to one AIO and each curve in each plot shows the trend of the perceived quality by the AIO as the image color saturation decreases. The plot labeled as "AVG" shows the average of the trends exhibited by the 19 AIOs.

#### L Fotio

(b) Proposed AIOs

• **Reasonable assumption:** an accurate subject asked to assess the disturbance of artifacts caused by noise, blur, JPEG, and JPEG2K compression would assign **decreasing opinion scores** to images from (a) to (e) in a single stimulus test.



(a) std=0.05

(b) std=0.15

(c) std=0.25

Fig. 8. Visual effect of the Gaussian noise applied to the images in our sensitivity analysis. The level of degradation is controlled by the standard deviation (std) of the Gaussian noise. We expect that a subject tasked to rate distortion caused by noise, blur, JPEG and JPEG2000 compression perceives a decrease in the image quality when moving from (a) to (e).

#### L Fotio

(d) std=0.35

(e) std = 0.45

# **AIOs Sensitivity to Colour Saturation**

 Considering several distortions and adding a "not perceptible" noise for data augmentation at the first step of HLT enabled the training of AlOs whose sensitivity to noise more resembles that of a human observer



(a) AIOs published in [53]

Fig. 10. The average perceived quality by the state-of-the-art AIOs published in [53] (left) and the proposed AIOs (right) as a function of the standard deviation of the Gaussian noise added to the input image. Each plot (excluding the one labeled as "AVG") corresponds to one AIO and each curve in each plot shows the trend of the perceived quality by the AIO as the standard deviation of the added noise increases. The plot labeled as "AVG" shows the average of the trends exhibited by the 19 AIOs.

#### L Fotio

(b) Proposed AIOs

# **Summary of Sensitivity Analysis**

- The size of current subjectively annotated datasets with individual opinion scores is not large enough to expect that AIOs goes beyond prediction, mimicking aspects they are not trained for
- Researchers, however, have some consolidated knowledge about the subjects' scoring behaviour
- To obtain AIOs that mimic rather than predicting, we should consider expressing such a knowledge as assumptions
- These assumptions can then be integrated into the training process through data augmentation strategies or constraints

# **Ongoing Research**

- **Objective:** to train AIOs that directly receive high-resolution images (HD, FHD, and potentially higher resolutions) as input
- Key challenges:
  - Need for a new large-scale subjectively annotated dataset:
    - Current **dataset**: 22,000 pristine quality images collected from professional photography websites Requirement: need for subjective annotations gathered through HLT
  - Hypothetical Reference Circuits (HRCs):
    - Selection: determine which HRCs to apply
    - Resolution: decide the appropriate resolution for HRC application
    - Presentation: establish the resolution at which images should be displayed to subjects and the DNNs
  - Challenges in DNN Training with High-Resolution Images:
    - Currently implementing and testing bilinear and spatial pyramid pooling layers for AIOs training

## Thank you for your attention

VQEG\_JEG-Hybrid\_2024\_108

**L** Fotio