

## QoL assessment with XR

(Orientation and mobility test in virtual reality, a quantitative assessement of functional vision : datasets and evaluation)

Patrick Le Callet – VQEG Spring Meeting 2025







### Definition of Quality of Life?



Progress in Retinal and Eye Research

journal homepage: www.elsevier.com/locate/preteyeres

Endpoints for clinical trials in ophthalmology

Leopold Schmetterer <sup>a,b,c,d,e,f,g,\*</sup>, Hendrik Scholl <sup>g,h</sup>, Gerhard Garhöfer <sup>e</sup>, Lucas Janeschitz-Kriegl <sup>g,h</sup>, Federico Corvi <sup>i</sup>, SriniVas R. Sadda <sup>j,k</sup>, Felipe A. Medeiros <sup>1</sup>

« Although there is no generally accepted definition of health-related Quality of life (QoL), it is usually understood as a measure of a subject's well-being and/or how a certain medical condition may affect a patient on an individual level Karimi and Brazier, 2016

## Low vision: a societal challenge



Vision impairments in France 1990-2020 (https://www.statista.com/)

#### By 2020 in France:

- \* 2% of the population affected by visual impairment;
- Numbers are rising.

#### By 2020 in the world[1]:

- ❖ 596 million people affected by visual impairment;
- Predicted 896 million people affected by 2050.

<sup>[1]</sup> Bourne R, Steinmetz J D, Flaxman S, et al. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study[J]. The Lancet global health, 2021, 9(2): e130-e143.

## **Context**

#### **Visual Function**







Visual Acuity

Visual Field

**Contrast Sensitivity** 

- ❖ Focus: Organ<sup>[1]</sup>;
- \* Assessment: Clinical standardized quantitative measurement tools.

Independently measured, quantitative



#### **Functional Vision**





Activity of daily living

Quality of Life

- ❖ Focus: Person<sup>[1]</sup>;
- \* Assessment: Questionnaire.

Easy score, subjective, not reliable.



[1] Bennett C R, Bex P J, Bauer C M, et al. The assessment of visual function and functional vision[C]//Seminars in pediatric neurology. WB Saunders, 2019, 31: 30-40.





#### **HHS Public Access**

Author manuscript

Clin Exp Ophthalmol. Author manuscript; available in PMC 2019 April 01.

Published in final edited form as:

Clin Exp Ophthalmol. 2018 April; 46(3): 247-259. doi:10.1111/ceo.13022.

## Novel mobility test to assess functional vision in patients with inherited retinal dystrophies

Daniel C Chung, DO<sup>1</sup>, Sarah McCague, BA<sup>2</sup>, Zi-Fan Yu, ScD<sup>3</sup>, Satha Thill, MS<sup>3</sup>, Julie DiStefano-Pappas, BA<sup>4</sup>, Jean Bennett, MD PhD<sup>2,5</sup>, Dominique Cross, MPH<sup>2</sup>, Kathleen Marshall, COT<sup>2</sup>, Jennifer Wellman, MS<sup>1</sup>, and Katherine A High, MD<sup>1</sup>



#### Our VR seated orientation and mobility test (VR-S-O&M)<sup>[4,5]</sup>

- Flexible design & reconfigurable;
- Safer;
- Cheaper;
- Access to behavior data;



















(a) A participant was doing the test (b) The point of view of this participant (c) Multiple test virtual environment

<sup>[4]</sup> Crozet A, Communier L, Vigier T, et al. A Virtual Mobility Test to Evaluate Functional Vision of Visual Impaired Patients[C]//IMXw'23: ACM International Conference on Interactive Media Experiences Workshops. ACM, 2023.

<sup>[5]</sup> Huang Y, Crozet A, Vigier T, et al. Orientation and mobility test in virtual reality, a tool for quantitative assessment of functional vision: dataset and evaluation in healthy subjects[J]. arXiv preprint arXiv:2504.13735, 2025.

#### **MOVING TO VR**



















## Refining Functional Vision Assessment in Virtual Reality

Speaker: Yujie HUANG <sup>1</sup>

**Supervisor: Patrick LE CALLET 1,2** 

Co-Supervisor: Alexandre BRUCKERT <sup>1</sup>

1. Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

2. Institut universitaire de France (IUF)



## Performance Analysis/KPIs

#### **Research Questions:**

- RQ1: Are the current metrics sufficient to our VR-S-O&M test?
- RQ2: How to take advantage of our rich behavior data to refine the scoring system?

| Dataset with Healthy subjects <sup>[5]</sup> | Preliminary data collected from Visually impaired subjects |
|----------------------------------------------|------------------------------------------------------------|
| 42 Participants;                             | 9 Participants (2 were excluded due to little tolerance);  |
| Each did 12 runs;                            | Each did 1~2 runs;                                         |
| 479 valid runs collected;                    | 12 valid runs collected;                                   |
| 6 virtual labyrinths randomly used;          | 6 virtual labyrinths randomly used;                        |

<sup>[5]</sup> Huang Y, Crozet A, Vigier T, et al. Orientation and mobility test in virtual reality, a tool for quantitative assessment of functional vision: dataset and evaluation in healthy subjects[J]. arXiv preprint arXiv:2504.13735, 2025.

### Conventional scoring system

"15 s added for each simple error, 30s added for each redirect. "[2,3]

$$TimeScore = t_{duration} + \underbrace{t_{penalities}}$$

$$AccuracyScore = \frac{N_{penalities}}{N_{obstacles}}$$

<sup>[2]</sup> Chung D C, McCague S, Yu Z F, et al. Novel mobility test to assess functional vision in patients with inherited retinal dystrophies[J]. Clinical & experimental ophthalmology, 2018, 46(3): 247-259.

<sup>[3]</sup> Aleman T S, Miller A J, Maguire K H, et al. A virtual reality orientation and mobility test for inherited retinal degenerations: testing a proof-of-concept after gene therapy[J]. Clinical Ophthalmology, 2021: 939-952.

### Conventional scoring system



<sup>[2]</sup> Chung D C, McCague S, Yu Z F, et al. Novel mobility test to assess functional vision in patients with inherited retinal dystrophies[J]. Clinical & experimental ophthalmology, 2018, 46(3): 247-259.
[3] Aleman T S, Miller A J, Maguire K H, et al. A virtual reality orientation and mobility test for inherited retinal degenerations: testing a proof-of-concept after gene therapy[J]. Clinical Ophthalmology, 2021: 939-952.

#### RQ1: Are the current metrics sufficient to our VR-S-O&M test?



 Even though these two metrics are discriminant for certain patients;

#### RQ1: Are the current metrics sufficient to our VR-S-O&M test?



- Although these two metrics are discriminative for certain patients;
- however, using only these metrics may not explain the outcome of many other patients.



The current metrics are superficial and lack explanatory power.

Building KPI using behavorial data

Using the **recorded behavior data**, we annotated three types of error existing in the test<sup>[6]</sup>:



Type A Missed object is out of FOV.



Type B Missed object is in FOV but not seen.



Type C Missed object is seen.

[6] Huang Y, Li C, Bruckert A, et al. Refining Functional Vision Assessment: Challenges in Adapting Orientation and Mobility Tests to Virtual Reality[C]//IEEE Conference on Virtual Reality and 3D User Interfaces (IEEE VR). 2025.



- Type A: related to objects in high position;
- Type B: related to objects with low contrast;
- Type C: No specific characteristic (may due to unfamiliarity with VR)

#### error occurrence among healthy participants and patients:



(a) Among healthy participants (N=479)



(b) Among patients(N=12)

Focus on A and B

error occurrence rate (Type A & Type B)

$$r_A = \frac{N_A}{N}$$
$$r_B = \frac{N_B}{N}$$

Based on these two features, 4 clusters were found in the Healthy group.



(a) 4 clusters in Healthy participants

(b) Healthy and visually impaired participants



(a) 4 clusters in Healthy participants

Baseline

(b) Healthy and visually impaired participants

#### For patients:

- The distance to each cluster centroid is calculated: Dist<sub>0</sub>, Dist<sub>1</sub>, Dist<sub>2</sub>, Dist<sub>3</sub>
- A general functional vision score is represented by calculating a overall distance:

$$s = \sqrt{Dist_0^2 + Dist_1^2 + Dist_2^2 + Dist_3^2}$$

• Two refined scores are represented by:

 $r_A \downarrow$ : Describes the capacity of high peripheral exploration;

 $r_B \downarrow$ : Describes the capacity of contrast-related vision.

## **Analysis and result**

RQ2: How to take advantage of our rich behavior data to refine the scoring system?

| Patient | Dist_0 | Dist_1 | Dist_2 | Dist_3 | s     |
|---------|--------|--------|--------|--------|-------|
| P1      | 3.029  | 3.074  | 2.746  | 2.740  | 5.803 |
| P2      | 2.963  | 3.086  | 2.745  | 2.624  | 5.720 |
| P5      | 2.563  | 2.708  | 2.372  | 2.219  | 4.945 |
| P6      | 0.483  | 0.588  | 0.252  | 0.224  | 0.832 |
| P7      | 0.483  | 0.588  | 0.252  | 0.224  | 0.832 |
| P8      | 0.657  | 0.887  | 0.800  | 0.509  | 1.443 |
| P9      | 2.602  | 2.788  | 2.483  | 2.266  | 5.084 |





(a) Calculated general score

(b) Patients ranking with new scores

## With the refined scores:

- A general functional vision score can be calculated for an overall assessment;
- Two sub scores can capture subtle performance.

## **Analysis and result**

RQ2: How to take advantage of our rich behavior data to refine the scoring system?

#### With the refined scores:

- A general functional vision score can be calculated for an overall assessment;
- Two sub scores can capture subtle performance.

(a) Calculated general score

(b) Patients ranking with new scores

Analysis of behavorial data (Head movement)



### **ADVANCED CLUSTERING OF BEHAVORIAL DATA**







## ADVANCED CLUSTERING OF BEHAVORIAL DATA (HMM+ T-SNE)



DR (Diminished Reality) for

Data augmentation
and empathy







## QoL assessment with XR

(Orientation and mobility test in virtual reality, a quantitative assessement of functional vision : datasets and evaluation)

Patrick Le Callet – VQEG Spring Meeting 2025



