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Abstract

The United States is interested in the development of useful and standard methods for the
performance assessment of audiovisual services and systems. This contribution is an
informational progress report on further developments and experimental results based on the
techniques described in COM 12-66-E. The material contained in this contribution is intended to
strengthen the value of the basic techniques, however the limitations listed in COM 12-66-E are
still applicable. Further work in this area is planned including development and comparative
analysis of other measurement methods such as algorithms based on a model of the human visual
system.

The results of a video performance assessment test are summarized. MPEG video at several bit
rates and coding methods was rated both subjectively and objectively.

The recently approved ANSI standard objective metrics for video quality (and others) were used
in the test. The statistical analysis of the data is summarized. The objective measures captured
about 90% of the subjective information that could be captured considering the level of
measurement error present in the subjective and objective data The metrics are thus shown to
work well for MPEG encoded video.
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OBJECTIVE AND SUBJECTIVE MEASURES OF MPEG VIDEO QUALITY:
SUMMARY OF EXPERIMENTAL RESULTS

Introduction

In this contribution the results of a video performance assessment test are summarized. MPEG
video at several bit rates and coding methods was rated both subjectively and objectively. The
subjective viewing test utilized a novel method for rating the video. Viewers were asked to rate
(in dollars) the amount they would be willing to pay per month to receive the better of each pair
of conditions.

The objective metrics for video quality defined in ITU-T COM 12-66-E (and others) were used
in this test. Statistical analysis of the data is summarized. The objective measures captured about
90% of the subjective information that could be captured considering the level of measurement
error present in the subjective and objective data.

The conclusion is reached that by using a set of 3 or 4 objective measures as indicated a
correlation coefficient of .87 is achieved. Since the covariance/variance analysis indicates that
.92 is the best possible for this study, the result is significant. The metrics are thus shown to
work well for MPEG encoded video.

The summary of the study is offered for information and to support the proposal that these
measures (or a subset of them) be considered for inclusion in the draft new Recommendation on
objective assessment of video quality.

Proposal
It is proposed that the twenty objective measures (or a subset of the twenty) presented in this

contribution be considered for inclusion in the draft new Recommendation on objective
measures of video quality.

It is proposed that the subjective method (with modifications for different currencies) utilized in
this study be considered for inclusion in ITU-T P.910 when the Recommendation is revised.



Background

In ITU-T Contribution COM 12-66-E [15] a number of objective video quality
measurements is presented. These measurements were selected after a multi-lab quality
assessment study that included video systems from bit rates of about 100 kb/s to 45 Mb/s.
This set of objective quality measurements performed well in accounting for subjective
Judgements by human viewers. While 25 video systems were included, this study did not
cover MPEG video systems.

The two MPEG studies presented in this contribution were conducted to fill in the bit-rate
gap in the previous multi-lab study. In particular, the current studies concentrate on bit
rates from 1.5 to 8.3 Mb/s and they examine MPEG 1 and MPEG 2 codecs specifically.
The effectiveness of the ANSI standard objective video quality metrics (defined in COM
12-66-E [15]) are examined for these bit rates and coding technologies. In addition, two
other measures are included in this study. These metrics are two matrix versions of spatial
information (SI) distortion named Possob (positive Sobel difference ) and Negsob
(negative Sobel difference). (See section 6.1.1.1 of COM 12-66-E [15] or P.910[4] for a
definition of spatial information). Spatial and temporal registration (or alignment) of the
input and output images is critical for successful implementation of matrix measures. For
more information on image calibration and alignment, see [14].

1. Overview of the Two MPEG Studies

1.1 HRCs? (Hypothetical Reference Circuits) and Scenes

The data and analyses reported here come from two previous data-collection efforts, one
on MPEGI codecs (i.e., coder-decoders) and one on MPEG2 codecs [1, 2].

The HRC:s tested in Study 1 were,:
1. MPEG 1 Bit rate 1.5 Mb/s Vertical Resolution 240 lines
2.MPEG1  Bitrate2.2 Mb/s Vertical resolution 240 lines
3. MPEG 1+ Bitrate 3.9 Mb/s Vertical resolution 480 lines
4. MPEG 1+ Bitrate 5.3 Mb/s Resolution 330-400 pixels X 480 lines
5.MPEG 1+ Bitrate 8.3 Mb/s Resolution 330-400 pixels X 480 lines
6. Original scene with an SNR (signal-to-noise ratio) of 34 dB
7. Original scene with an SNR of 37 dB
8. Original scene with an SNR of 40 dB
9. Original scene recorded and played back from a VHS VCR.
10. Original scene with no further processing.

And, in Study 2, the HRCs were:
1.MPEG2  Bitrate 3.0 Mb/s Resolution 352 (codec setup) X 480 lines

? The term Hypothetical Reference Circuit (HRC) refers to a specific realization of a video transmission
system. Such a video transmission system may include coders, digital transmission circuits, decoders, and
even analog processing (e.g., VHS) of the video signal.



2. MPEG 1+ Bitrate 3.9 Mb/s Resolution 352 (codec setup) X 480 lines
3.MPEG2  Bitrate 3.9 Mb/s Resolution 352 (codec setup) X 480 lines
4. MPEG2  Bitrate 5.3 Mb/s Resolution 704 (codec setup) X 480 lines
5.MPEG2  Bitrate 8.3 Mb/s Resolution 704 (codec setup) X 480 lines
6. Original scene with an SNR of 34 dB

7. Original scene with an SNR of 37 dB

8. Original scene with an SNR of 40 dB

9. Original scene recorded and played back from a VHS VCR

10. Original scene with no further processing.

The random noise for HRCs 6-8 in each study was added to the signals by attenuating a
modulated version of the signals before passing them on to a demodulator. The'SNR was
measured with a Tektronics VM700 video test instrument. To avoid introducing jitter
when recording these signals, the noise on the synchronizing pulses was removed by
regenerating them in a processing amplifier. The VHS unit used was a consumer model,
rather than a laboratory model. Note that MPEG 1+ at 3.9 Mb/s and the comparison
HRCs 6-10 were used in both studies.

The same set of scenes was used in both studies. The scenes were chosen to span a range
of coding difficulty, within the general domain of entertainment. They were not all
chosen to stress the codecs as much as possible. Each scene was 14 seconds long. Four
of the scenes are clips from movies and four of the scenes are clips from sporting events.
The sources for the movie clips were commercial laser discs copied to MII equipment
using a Y/C component connection. The sports event scenes were supplied by local
broadcasters on Betacam SP tape.

2. Objective Measures
2.1 Performance Measurement Issues for Digital Video Systems

2.1.1 Input Scene Dependencies

A digital video transmission system that performs adequately for video teleconferencing
might be inadequate for entertainment television. Specifying the performance of a digital
video system as a function of the video scene coding difficulty yields a much more
complete description of system performance. Recognizing the need to select appropriate
input scenes for testing, algorithms have been developed for quantifying the expected
coding difficulty of an input scene based on the amount of spatial detail and motion [3,
Annex A of 4]. Other methods have been proposed for determining the picture-content
failure characteristic for the system under consideration [Appendices 1 and 2 to Annex 1
of 5]. National and international standards have been developed that specify standard
video scenes for testing digital video systems [4, 6, 7). Use of these standards helps
ensure that adequate care is taken when evaluating systems from different suppliers.



2.2 The Objective Measurement Methodology

The objective performance measurement system used in this study digitizes the input and
output video streams in accordance with ITU-R Recommendation BT.601-4 [10] and
extracts features from these digitized frames of video. Features are quantities of
information that are associated with individual video frames. They are used to quantify
fundamental perceptual attributes of the video signal such as spatial and temporal detail.
Parameters are calculated using comparison functions that operate on two parallel
sequences of these feature samples (one sequence from the output video frames and a
corresponding sequence from the input video frames). The ANSI standard contains
parameters derived from three types of features that have proven useful: (1) scalar
features, where the information associated with a specified video frame is represented by
a scalar; (2) vector features, where the information associated with a specified video
frame is represented by a vector of related numbers; and (3) matrix features, where the
information associated with a specified video frame is represented by a matrix of related
numbers.

Further refinement in objective video quality assessment promises to lead to “in-service”
objective methods for measuring video quality that may be good enough to replace
subjective experiments. Already it is possible to perform non-intrusive, in-service
performance monitoring which is useful for applications such as fault detection,
automatic quality monitoring, and dynamic optimization of limited network resources.

2.2.1 Producing Frame-by-Frame Objective Parameter Values from Features

Frame-by-frame parameter values can be computed by applying mathematical
comparison functions to each input and output feature value pair (the algorithms for
temporally aligning output and input images will be discussed below). Useful
comparison functions include the log ratio (logarithm base 10 of the output feature value
divided by the input feature value), and the error ratio (input feature value minus output
feature value, all divided by the input feature value). These frame-by-frame objective
parameter values give distortion measurements as a function of time.

Subjective tests conducted in accordance with CCIR Recommendation 500 [5] or ITU-T
Recommendation P.910 produce one subjective mean opinion score (MOS) for each
HRC-scene combination. Since these video clips are normally about 10 seconds in
length, it is necessary to “time collapse” the frame-by-frame objective parameter values
before they are correlated to subjective MOS. COM 12-66-E [15] specifies several useful
time collapsing functions such as maximum, minimum, and root mean square (rms). The
maximum and minimum are useful to catch the extremes of video quality while the rms is
a good indicator of the overall average.

2.3 Description of the Video Processing System

A computer-controlled frame capture and storage system was used to sample and store
the video clips from the two MPEG studies. Video is received on Betacam SP tape
cassettes. An HP workstation controls both a Sony BVW-65 and a Truevision AT Vista
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frame grabber installed in a PC. For the results in this paper, only the luminance cha;ﬁhel
from the Betacam SP deck was used.

The ITU-R Recommendation BT.601 A/D sampling rate of 13.5 MHz results in a frame
size of 720 x 486 pixels. Each pixel is sampled using 8 bits giving 256 discrete levels of
luminance. The A/D is adjusted to sample black (normally 7.5 IRE) as 16 and white
(normally 100 IRE) as 235.

Using the dynamic tracking and remote control capabilities of the BVW-65, NTSC fields
1 and 2 are grabbed and combined to produce an NTSC frame. The NTSC frame is
stored in TIFF format on a video optical disc jukebox which allows storage of up to 1
hour of uncompressed video.

This data collection and storage system ensures the availability of each frame or field at
any timecode during the processing by the HP workstation. The optical jukebox provides
random access to input and output frames, which enables the objective video quality '
measurement system to implement matrix metrics (based on pixel by pixel comparisons
of entire frames), as well as scalar and vector metrics.

2.4 Calculation of Gain, Level Offset, and Active Video Shift

Calibration is an important issue whenever input and output video frames are being
directly compared. Neglecting calibration can produce large measurement errors in the
parameter values. For example, both non-unity channel gains and non-zero level offsets
can have a significant effect on the calculations of peak signal to noise ratio (PSNR) and
other parameters defined in COM 12-66-E.

COM 12-66-E [15] specifies robust methods for measuring gain, level offset, and active
video shift (i.e., spatial registration of input and output video frames). These methods
require the use of still video and, in the case of the gain and level offset calculations, that
still video is a test pattern defined in the standard. An alternative method for performing
these calibration measurements had to be devised for the MPEG experiments because the
calibration frames were not included on the source tapes. For a description of this new
method see [14].

The calibration analysis revealed that it is quite common for digital video systems to have
substantial non-unity gains, level offsets, and horizontal and vertical shifts of the output
video. For details see [14].

In light of the calibration analysis, a separate gain g, level offset /, horizontal shift 4, and
vertical shift v; was computed for each clip (i.e., each HRC-scene combination). This
was done by median filtering the calibration quantities for that clip. Each frame of the
clip was then corrected using the median filtered calibration quantities for that clip before
any objective parameters were computed. Note that within-scene variations from the
calibration quantities are not removed by this approach. These within-scene variations
will thus be detected as impairments by the objective parameters.



2.5 Temporal Alignment (i.e., Video Delay)

The output video frames must be temporally aligned, or registered, to the input video
frames before the objective parameters can be computed. Temporal misalignment of the
input and output video streams results from accumulated video delays in the end-to-end
transmission circuit (e.g., coder, digital transmission channel, decoder). There are two
fundamental methods that can be used to perform temporal alignment. The first method,
called constant alignment, gives one time delay measurement for the entire output video
stream. The second method, called variable alignment, gives a time delay measurement
for each individual output video frame (See ITU-T COM-12-75-E [16]). Objective
parameters can be computed using either temporal alignment method. When constant
alignment is used, frame by frame distortion metrics measure errors produced by both
spatial impairments and repeated output frames. With variable alignment, frame by
frame distortion metrics measure only those errors produced by spatial impairments, and
the error caused by repeated output frames is quantified separately using variable frame
delay statistics.

2.5.1 Temporal Alignment Test Results

For higher quality transmission systems like MPEG, the field-based constant alignment
method presented in [15] has proven to be a simple and excellent technique for measuring
video delay. They have the added advantage of being “in-service” methods of
measurement for video delay. For transmission systems that repeat frames, drop frames,
or perform temporal warping, constarit alignment produces a temporal alignment that
reflects the average alignment of the ensemble of output video frames being examined.
For the current studies, the constant alignment technique was chosen as the one to use for
computation of the objective parameters.

2.6 Summary of Objective Parameters Used for the MPEG 1+ and MPEG 2 Tests

This section presents a tabular summary of the objective parameters that were computed
for each HRC-scene combination in the MPEG 1+ and MPEG 2 studies.

Parameter Description Reference for Method of Measurement
(COM 12-66-E)
711 maximum added motion energy Section 7.1.1
712 maximum lost motion energy Section 7.1.2
713 average motion energy difference Section 7.1.3
714 average lost motion energy with noise  Section 7.1.4
removed

* In this case, high quality refers to the temporal aspects of the video (i.e., systems that rarely drop frames)
and includes analog video transmission systems as well as high bit-rate digital video systems.



715
716
717
718
719

719_60

719a

719a_60

7110
7110a

721
722
732
733
Negsob

Possob

Notes:

percent repeated frames
maximum added edge energy
maximum lost edge energy
average edge energy difference

maximum HYV to non-HV edge energy
difference

maximum HYV to non-HV edge energy
difference, threshold=60

minimum HV to non-HV edge energy
difference

minimum HV to non-HV edge energy
difference, threshold=60

added edge energy frequencies

missing edge energy frequencies

maximum added spatial frequencies
maximum lost spatial frequencies
minimum peak signal to noise ratio
average peak signal to noise ratio

negative Sobel difference

positive Sobel difference

Section 7.1.5
Section 7.1.6
Section 7.1.7
Section 7.1.8
Section 7.1.9

Section 7.1.9 using an r;, of 60 instead of
20

Section 7.1.9 using the feature comparison
function in section 6.5.1.5

Section 7.1.9 using an ry;, of 60 instead of
20 and the feature comparison function in
section 6.5.1.5

Section 7.1.10

Section 7.1.10 using modified feature
comparison function to sum the missing
frequencies (i.e. sum positive part instead
of negative part)

Section 7.2.1
Section 7.2.2
Section 7.3.2
Section 7.3.3

Mean of the negative part of the input
minus output pixel by pixel differences of
ST, values (see section 6.1.1.1), mean
[Sobel(input)-Sobel(output)],, ([X]np
defined in section 6.5.1.9)

Mean of the positive part of the input
minus output pixel by pixel differences of
S1; values (see section 6.1.1.1), mean
[Sobel(input)-Sobel(output)]g, ([X]p,
defined in section 6.5.1.7)

1. The “HV to non-HV edge energy difference parameters” were computed using an r,;, threshold of 60
in addition to the recommended r,,;, threshold of 20. It was observed that an r,, threshold of 20
included nearly every pixel in the sampled video frames due to the amount of noise which was present
in the source video. With an r,,;, threshold of 60 the noise was effectively eliminated from the

calculation



2. The “added edge energy frequencies” and “missing edge energy frequencies” parameters were actually
computed using a mean calculation rather than a sum calculation in the comparison function in section
6.5.1.9 to remove the effect of scene length.

3. Subjective Data

3.1 Methods Used to Collect Subjective Data

The method used to collect subjective data was a variant of the CCIR 500 method.
Recorded video segments were played back to human observers on a single high-quality
monitor in a room with controlled illumination. The video segments were presented in
pairs, so that each judgment was a comparison of two video treatments. The observers
made subjective judgments and recorded them on answer sheets.

The method for collecting subjective judgments of video quality also differed from the
CCIR 500 method used in the 1994 multi-lab study (see [2], for rationale and details).
Three main differences were

- HRCs were compared to each other, not to the original, unprocessed clip. For a
given number of “trials” (exposures to stimuli), this method provides a larger
number of exposures to the HRCs being tested. Rather than the original being
presented, say, 80 times while all other HRCs are presented eight times, as in
the “standard” method, in the current method the original is presented eight
times as a comparison and the other 72 exposures are equally spread among the
other HRCs.

- The judgment that observers made was different from the impairment scale
methods. Rather than rating on a five-point impairment scale, observers (a)
chose the better HRC in each pair, then (b) estimated the difference between
the value of the two HRCs in dollars per month. This method does correlate
highly with the impairment scale method, but also provides other technical
advantages (see [2]).

- The video clips were recorded and played back on a video disc, rather than on a
Betacam SP tape recorder. The performance specifications for the video disc
machine are marginally lower than for the tape machine (>45 dB video S/N,
450 pixels horizontal resolution). The video disc has the advantages of random
access and computer control. The ordering of stimuli was separately
randomized for each subject in real time. Also, the pairings of HRCs and
scenes were randomized; over the course of the full experiment, each HRC was
paired with each scene approximately an equal number of times, but on any
specific trial the scene was selected randomly. This sampling procedure is
based on the logic that the HRCs we are testing are known, fixed, and limited
in number, while the scenes are sampled from a potentially infinite pool.

In the MPEG 1+ study 30 observers provided data in the dollar-rating task. The
observers were not laboratory employees. They were chosen to be cable TV customers,
familiar with the signal quality of cable TV, and also familiar with paying for TV service.



Their demographics were unremarkable. The MPEG 2 study also used a sample of 30
consumers with the same overall description as the MPEG 1+ study. Some of the same
subjects participated in both studies, but the studies were separated by nearly a year, more
than enough time for subjects to forget fine details of visual stimuli.

3.2 Summary of Subjective Data

The basic subjective data for this study are the mean dollar ratings for each HRC-scene
combination, averaged across 30 observers. Each rating represents the average difference
between a given HRC and the other HRCs with which it was compared. Table 1 shows
the mean ratings for the MPEG 1+ study and shows the mean ratings for the MPEG 2
study. The standard errors of the values in Table 1 are on the order of 0.7, and in the
standard errors are on the order of 1 (there being half as many trials per subject as in the
MPEG 1+ study). '

Other papers have presented analyses of these subjective data in some detail [1,2]. In
both data sets the ratings are statistically related to the variables: HRC, Scene, and the
specific HRC-Scene combinations. This is what one would expect, and the subjective
data are in accord with expectations. Other analyses demonstrate that the subjective data
are not excessively noisy and show systematic differences between the way observers
react to analog vs. digital HRCs. We do not present further analyses of the subjective
data by themselves here. Instead, we concentrate on analyses of the objective data as
predictors of the subjective data.

Table 1 Mean subjective ratings of HRC-scene combinations, MPEG 1+ study

Original

Scene 1.5 2.2 3.9 5.3 8.3 34 dB 37 dB 40 dB VHS
Mb/s Mb/s Mb/s Mb/s Mb/s

2001 0.86 -0.57 2.79 1.33 2.53 -7.92 -3.93 -2.12 2.35
Graduate -4.37 -6.06 0.84 0.22 1.97 -7.88 -4.98 -1.39 -0.11
Godfather 0.46 -0.19 0.80 1.70 2.18 -8.44 -2.22 -3.34 1.79
Being There 1.23 0.68 2.29 2.36 2.97 -9.14 -4.76 -0.65 1.81
Basketball -4.26 -1.04 0.31 2.46 3.50 -6.84 -1.88 0.47 2.71
Baseball -2.37 -0.41 3.56 2.30 2.00 -8.05 -5.57 -3.15 5.21
Hockey 1 -5.65 -5.53 -0.29 0.89 2.52 -3.94 1.97 2.39 3.79
Hockey 2 -4.61 -3.92 2.39 2.11 0.58 -5.12 -0.36 2.75 2.74

W W NN W W

.85
.09
.04
.91
.17
.38
.16
.94
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Table 2 Mean subjective ratings of HRC-scene combinations, MPEG 2 study

Scene 3. 3.9 3.9 5.3 8.3 34 dB 37 dB 40 dB VHS Original
Mb/s Mb/s Mb/s Mb/s Mb/s
1+
2001 3.40 1.17 2.57 3.29 2.56 -10.47 -6.29 0.24 2.00 2.90
Graduate -0.13 1.68 1.11 1.94 l.16 -10.09 -4.78 -2.65 0.23 3.38
Godfather 0.20 -0.72 2.80 3.17 1.13 -9.45 -6.75 -4.50 3.54 3.26
Being There 2,00 1.64 3.70 1.89 3.95 -9.50 -5.43 -2.13 1.30 2.35
Basketball 0.15 -0.68 0.22 1.36 3.42 -6.33 -2.73 -0.60 5.40 3.60
Baseball -1.00 3.35 1.44 2.50 4.20 -7.29 -6.69 -1.37 4.20 4.22
Hockey 1 2.38 —6.13 0.?3 1.69 3.85 -6.06 -4.06 -0.10 1.36 2.38
Hockey 2 -0.24 -3.60 3.69 0.86 3.17 . -8.89 -1.91 -0.26 1.25 4.15

4. Statistical Analyses

4.1 Methods

4.1.1 Strategy

The theoretical goals of the analysis are to

- Find the “best” set of objective measures for predicting the subjective judgments, and
- Determine how close to optimal these predictors are.

Two features of most data sets complicate the problem of finding the "best" set of

predictors and force one to use compensating data analysis strategies. The complicating

features of data are (a) noise, and (b) redundancy. Two consequences of noise are (a) that
a different set of predictors will best fit in different, but comparable, data sets, and (b) the

best fit will never be 1.0. Two consequences of redundancy in a set of variables are (a)

different subsets of variables will fit a data set (essentially) equally well, and (b) if too

many redundant variables are used as predictors, results can be very unstable from one

analysis to the next, especially in the presence of noise.
Because of the realities of data,

- The actual goals of the analysis are to find a generalizable and meaningful set of
predictor measures;

- Several sets of predictors may be essentially equally good; and
- The fit of these good sets of predictors will be less than 1.0.

Strategies for dealing with data with noise and redundancy are:

- Measure the redundancy in the set of predictor variables;

- On the basis of the measure of redundancy, pre-specify the maximum number of
variables to be used in any analysis;

11
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- Use variables that are known a priori to be causally related to the dependent variable

whenever possible; .
- Verify that a candidate set of predictor variables generalizes to another data set or
sample. .

4.1.2 Redundancy

The set of 20 objective measures are based on a few fundamental quantities such as
spatial and temporal differences in pixel brightness. The measures fall into families of
closely-related measures (see above). A statistical measure of the amount of redundancy
in the set of 20 measures is the number of orthogonal (i.e., uncorrelated) variables needed
to account for most of the variance in the set of measures. The analysis that computes
this measure is “principal components analysis.” Generally, one considers the number of .
principal components for a data set to be the number whose eigenvalues are greater than
1.0. In practice, an analysis is considered successful if it accounts for about 70% or 80%
of the variance in a set of measures with a number of components equal to about a third
or fourth the number of original variables.

4.1.3 Reliability

The reliability issue is important because it limits the statistical fit of even a perfect
objective measure (see [12, 13]). That is, if the subjective judgments have noise in them
(as we know they certainly will), then even perfect objective measures will not be able to
predict the subjective judgments perfectly. The definition of reliability of a variable is:
The ratio {the variance in the variable if it were measured perfectly} / {the variance in the
variable if it were measured perfectly, plus error}. This definition is theoretical because
one never observes "the variance in the variable if it were measured perfectly." However,
one can still estimate the ratio using observable quantities, as follows (see [13]).

- The denominator is just the variance in the variable as actually observed: This
variance is, by hypothesis, composed of both the true value and error. The estimator
for the denominator is the mean square (varlance) pooled across the two subsamples,
i.e., the MPEG 1+ and MPEG 2 studies.

- The numerator is estimated by the covariance of the observed variable across the two
studies. This simple estimator is based on the assumption that the error in the two
studies is independent and uncorrelated with the variable itself. In this case, the
covariance of the observed variable with itself is the same as the variance of the
variable if it were measured perfectly.

We used the method of analyzing repeated measurements to compute estimates of the
statistical reliability® of the objective measures and of the subjective measure. Five of the
HRC:s and all eight of the scenes were nominally the same across the two experiments.
The repeated HRCs were MPEG1+ at 3.9 Mb/s, the cable simulations at 34, 37, and 40

* The term “reliability” is somewhat misleading when applied to objective measures of video quality. Ifa
measure receives a low reliability score, one might think of the measure as defective, while in fact the
measure may be accurately responding to real differences in the video streams between the two studies.
Despite this incorrect connotation, the term “reliability” is the one that the statistics literature recognizes.

12



dB S/N, and VHS. We say “nominally the same” because the two tapes of the HRCs and
scenes were not identical frame-by-frame and pixel-by-pixel. In this sense, when we
speak of a measurement in the present study we refer to the end-to-end process of
obtaining the video signal and preparing it for measurement, as well as the digitizing and
computing.

4.1.4 Regression

We use a standard regression program found in the SAS statistical software package for
most of the analyses in which we use the objective measures to predict the subjective
Jjudgments. We also use a “stepwise” regression as a secondary analysis. Stepwise
regression is an exploratory data analysis technique that looks for a best-fitting set of
predictor variables via a mechanical algorithm. Stepwise is an exploratory technique in
the sense that it can suggest hypotheses on the basis of one data set for testing in another
data set. (The “best” set of variables stepwise regression finds is rarely the set that is
most generalizable.)

4.2 Results

4.2.1 Redundancy in objective measures

MPEG 1+ data set alone. The 20 objective measures, applied to the MPEG 1+ data set of
72 HRC-scene pairs, yielded four “factors” in a principal components analysis. The four
factors accounted for 81% of the variance in the 20 measures. The factors are described:

1. The first component accounted for 33% of the variance in the data. The four
measures with the largest correlation were 719 and 719_60 (two measures of edge
energy difference), 721 (a measure of added spatial frequency), and Negsob (a
measure of the difference between the Sobel transforms of the original and processed
images). '

2. The second principal component accounted for 28% of the variance, and the pattern
of correlations was complementary to that of the first principal component (high
where the first was low, and vice versa). The three measures with the largest
correlations were 712 (lost motion), 722 (lost spatial frequency), and Possob (a
second, complementary measure based on differences in Sobel images).

3. The third principal component accounted for 13% of the variance. The four measures
that correlated highest with this component were 7110a (added edge energy), 713,
714, and 715 (types of motion difference, including repeated frames).

4. The fourth component accounted for 6% of the variance. It correlated highest with
7110 and 713 (types of motion difference).

MPEG 2 data set alone. The MPEG 2 data set also yielded four principal components
with eigenvalues greater than 1.0; the four accounted for 83% of the variance in the data.
Descriptions:
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1. The first component accounted for 44% of the variance in the data set. It correlated
equally well with six of the measures: the suite of four 719 variants (edge energy
difference), 721 (added spatial frequency), and Negsob (difference in Sobel images).
This principal component is very similar to the first principal component of the
MPEG 1+ data set.

2. The second component accounted for 21% of the variance. Its four highest
correlations were with measures 717 (lost edge energy), 732 and 733 (peak signal to
noise ratio), and Possob (the other measure of differences in Sobel images). Again,
the second component is similar across the two data sets.

3. The third principal component accounted for 9% of the variance. It correlated most
highly with measures 7110 (added edge energy) and 713 (motion difference). This
principal component is similar to the fourth component of the MPEG 1+ data.

4. The fourth principal component accounted for 8% of the variance. It correlated most
highly with the measures 7110a (another measure of added edge energy) and 714
(another measure of motion difference). This principal component corresponds to the
third component of the MPEG 1+ data.

Thus, the MPEG 2 data set replicates the pattern of results from the MPEG 1+ data set
quite well. The total amount of redundancy in the measures was very similar, and the
pattern of redundancy was similar across the two sets of HRCs.

MPEG 1+ and MPEG 2 data sets together. A principal components analysis of the two

data sets together revealed a similar pattern of results (as one might expect). Four
principal components had eigenvalues greater than 1.0, and jointly accounted for 80% of
the variance. Descriptions of the components:

1. The first component, as in the two data sets separately, correlated highest with
measures from the 719 series, 721, and Negsob. It accounted for 34% of the variance.

2. The second component, again similar to the second component for the two data sets
separately, accounted for 26% of the variance and correlated most highly with
measures 717, 722, and Possob.

3. The third component accounted for 12% of the variance and correlated highest with
the added edge energy (7110a) and motion difference measures (714, 715).

4. The fourth component, accounting for 7% of the variance, correlated highest by far
with measure 7110 (added edge energy; 7110 and 7110a are slightly negatively
correlated with each other).

4.2.2 Regression

Any one regression run, on any one data set, is unlikely to produce a generalizable result.
However, multiple runs on multiple data sets that produce similar answers form the basis
for credible and potentially generalizable results. The following analyses form a
sequence in which the details do not generalize from analysis to analysis, but the general
pattern of results does generalize.

1 prin el alysis. The principal
components analysis showed that the data do not support more than four orthogonal
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variables. This fact does not absolutely require that the regression use four or fewer
variables. However, practical experience shows that fewer rather than more variables
actually generalize to other data sets. Therefore we used only a single variable from each
of the four principal components that passed the eigenvalue test.

These variables were the measures 7110 (added motion energy), 713 (average motion
difference), 719_60 (edge energy difference), and 722 (lost spatial frequency). The
adjusted R? for this regression was 0.586. By comparison, the R? for the best model in
the TIAL.5 three-lab study, using comparably averaged subjective data, was 0.706. Also,
two of the four variables were not significant, viz., 7110 and 722. Variables only from
the first and third principal components were significant as predictors of the subjective
ratings. Thus, we might hope that we could do better with the MPEG data than we did
Just using variables from the principal components analysis.

MPEG 1+ alone, using Sobel image measures. The first two principal components of

both data sets correlate nearly maximally with the two Sobel image measures. Because
these measure are of a priori interest, we ran a regression using the Sobel measures as the
representatives of the first two components. The remaining two measures were 713 and
7110. The adjusted R* for this regression was 0.689, quite a bit better. The most
interesting outcome of this regression was that the Sobel measure Negsob was by far the
most important variable. Again, the variable 713 from the third principal component was
a significant predictor, and neither of the variables from the second and fourth principal
components were significant (i.e., Possob and 7110, respectively).

PEG 1+ alone, explorat wise analysis. Stepwise regression enters variables
sequentially, choosing the next variable that maximizes R> given the preceding variables.
Typically, results of a stepwise analysis are sensitive to noise in the data, so are not to be
trusted in isolation. However, when used in combination with other analyses, stepwise
can be informative. In the present data set, the order of entry of significant predictors
was: Negsob, 713, and 717. Negsob and 713 were significant predictors in the preceding
analyses. The measure 717 (lost edge energy) is highly correlated with the other
candidate measures from the second principal component (722 and Possob) that turned
out not to be significant for this data set. The R” for this three-variable model was 0.737,
which is respectable by comparison with the T1A1.5 results.

From the analyses of the MPEG 1+ data set, we can take forward the hypotheses (a) that a
variable from each of the first three principal components of the objective data set is
worth tr%/ing; (b) the most likely variable from the first principal component is Negsob;
(c) an R” above 0.7 is achievable.

MPEG 2 alone using measures from principal components analysis. As in the case of the
MPEG 1+ data set, results of the principal components analysis suggested four or fewer
measures should be used in the regression analysis. The measures that best fit the first
four components, respectively, were 719a_60 (edge energy difference), 717 (lost edge
energy), 7110 (added edge energy), and 714 (lost motion). The adjusted R? for the
regression with these variables was a respectable 0.718. However, variable 7110 was not
significant as a predictor (as was true of the MPEG 1+ data set).
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MPEG 2 alone using best MPEG 1+ measures. A set of candidate "best" predictors from
the MPEG 1+ analysis was Negsob, 713 (motion difference), and 717. The adjusted R>

fit of this model to the MPEG2 data was 0.815, quite an improvement over the variables
derived from the principal components, and also an improvement over the T1A1.5 multi-
lab data set. However, even with this good fit, both 713 and 717 were only marginally
significant, suggesting that an even better fit might be possible.

MPEG 2 alone, exploratory stepwise analysis. The order of entry of three clearly

significant vanables was Negsob, Possob, 714 and 711; 711 was marginally significant.
The adjusted R? for this model was 0.849, another i improvement. Again, Negsob was by
far the most important variable, achieving a fit of 0.774 by itself.

The three hypotheses from the MPEG 1+ data set were supported in this data set.
(Principal components three and four in the MPEG2 data set need to be switched for the
first hypothesis to be exactly true.) We take these hypotheses into the analysis of the
joint data set.

MPEG 1+ & 2 using measures from principal components. The measures that best

correlated with the first four principal components, respectively, of the combined data set
were Negsob, 722 (lost s gatlal frequency), 714 (lost motion), and 7110 (added edge
energy). The adjusted R” for this set of predictors was 0.704. The variables 7110 and
722 were not significant, as was the case in the analysis of the MPEGI1 data set. Again,
Negsob had by far the largest effect.

MPEG 1+ & 2 using variables from MPEG 2 analyses. A slightly different set of
variables had been identified in the analysis of the MPEG2 data, namely, Negsob and

714, as above, as well as Possob and 711. The adjusted R? for this set of variables was a
more respectable 0.769, and all variables were significant (Possob marginally).

MPEG 1+ & 2 using stepwise. The first three variables to enter the equation, and the
only three that appreciably improved the fit of the model, were Negsob, 711, and 714,

respectively. (Possob was marginal). The adjusted fit of the three-variable model was
0.763.

Peak signal to noise ratio. PSNR has been used as a measure of video quality for years.
We report its ability to predict subjective ju §ments in the present joint data set: R®=

0.181 for average PSNR (parameter 733) ; R"=0.095 for minimum peak SNR (parameter
732). By contrast, the R? for Negsob for the joint data set was 0.657.

4.3 Interpretation of results

4.3.1 Which measures work best

For the current data sets (i.e. higher resolution formats with little or no frame repetition),
the best single predictor of subjective video quality is Negsob (the mean of the negative
portion of the differences in pairs of Sobel images). Recall that Negsob becomes large in

16



absolute value when the coded video has false edges added to it, as in blocking. This
variable is both consistent across data sets and powerful in its ability to predict.

After Negsob, the ability to predict increases with the addition of another two or three
variables. Exactly which ones are picked is not terribly crucial as long as representatives
from the following families of measures are included:
- Possob or the family of measures of lost edge information (717 for lost edge energy, or
722 for lost spatial frequency, a measure of edge sharpness).
- 714 or the family of measures of lost motion (713 for average motion difference or
715 for repeated frames).

- 711 or measures of motion difference (713) or measures of edge energy difference (the
719 family).

The inclusion of matrix versions of spatial information (S7) distortion (i.e., Negsob,
Possob) increased the amount of subjective variance that was explained by the objective
metrics by about 5 to 8 percent. Thus, for the current studies, the price paid for
compressing the S7 information into a set of scalar quality features appears to be about a 5
to 8 percent reduction in prediction efficiency.

The particular package of measures that predicts subjective judgments best may depend
somewhat on the particular domain of HRCs and scenes for which one wants to make
predictions. For example,

- If one is interested in comparing only MPEG HRCs running at different bit rates, then
one package of measures could be slightly better, while if one were comparing MPEG
to VHS and cable, then another package might predict slightly better.

- If one were interested in determining acceptable bit rates for one kind of content (e.g.,
sports), then one package of measures might be slightly better, but if one were
interested in another kind of content (e.g., news and weather) then another package of
measures might be slightly better.

4.3.2 How good the statistical fit really is

In the combined data set the objective measures were able to account for 0.763 to 0.769
of the variance, depending on whether one used three or four predictor variables. By way
of companson in the T1A1.5 multi-lab study ([11], pg. 28), the fit was not quite as good:
R?=0.706.

Another comparison that is relevant is with the maximum R? that could have been
achieved, given the level of error in the data. More than a c; uarter century ago the
statistician Cochran dealt with the problem of estimating R m the presence of error ([13],
pg. 22): “This paper deals mainly with the relation between R, the squared multiple
correlation coefficient between y and the X's when these are correctly measured, and R?,
the corresponding value when errors of measurement are present.” We use Cochran's
equation 3.6 (pg. 24):

RZ=R?* (reliability of y) * (weighted average of reliabilities of X's).

Suppose R? were 1.00 in the case of no error of measurement, then R = 1.00 * 0.890 *
0.949 = 0.845, where 0.949 is a weighted sum of the reliabilities of the best predictors,
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711, 714, Negsob. (The weights are the absolute values of the beta coefficients for 7i 1,
714, and Negsob, scaled to sum to 1.00.) See [14] for the reliabilities of the objective
measures.

R? = 0.845 is the upper bound for prediction of subjective ratings by objective measures
when error of measurement is present in the amounts we have seen in the present study.
Compared to an R” of 0.845 (correlation coefficient of .92), the observed R? of 0.763
(correlation coefficient of .87) is 90% of maximum. As in the case of the TlAl .5 study,
the ability to predict is good but shows some room for improvement.
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5. Conclusions

* The current generation of objective video quality measures has achieved good
prediction of subjective ratings for entertainment-level HRCs. The objective
measures captured about 90% of the subjective information that could be captured
considering the level of measurement error present in the subjective and objective
data. We have not attempted to tune this set of measures to apply to a specific testing
situation, so we cannot say for certain whether this current set of measures has the
potential to be fine-tuned for application in testing equipment. However, the current
objective measures should be considered as reasonable candidates for testing
applications.

* The kinds of objective variables that predict subjective responses well for MPEG
video are '
(2) Measures of the addition of false edges, in particular the matrix measure Negsob,
(b) Measures of lost sharpness of edges,
(c) Measures of change in motion.

* A traditional objective variable that does not predict subjective responses well for
MPEG video is PSNR. PSNR captured only about 21% of the subjective information
that could be captured considering the level of measurement error present in the
subjective and objective data.

* The conclusion is reached that by ‘using a set of 3 or 4 objective measures as indicated
above, a correlation coefficient of .87 is achieved. Since the covariance/variance
analysis indicates that .92 is the best possible for this study, this result is very good.
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