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1. Introduction

The ability of the human eye to resolve detail in a video scene is related to how much
motion is present at the point of focus and whether or not the eye can track the motion. Thus,
stationary portions of the video scene can be resolved in great detail by the eye, while moving
portions of the video scene are normally resolved in less detail (provided the eye cannot fully
track the motion). The VTC/VT transmission channel determines how many bits are used for
each local area d@he video scene. Since the time averaged information content of a still video
scene is much less than the time averaged information content of a moving scene, typical
VTC/VT transmission channels can have very different static and dynamic responses. The
dynamic response of the VTC/VT transrmasschannel is also a function of the video scene and
can vary on a frame-by-frame basis. Thus, itsrdble to have a general algorithm (applicable
to any test waveform or test scene) that can separate the dynamic response from the static
response on a frame by frame basis. This contribution proposes one such algorithm. The
motion-still segmentation algorithm presented here can be applied to any test waveform or test
scene in order to separate the moving portions from the still portions of the video scene.

First, we provide a detailed description of the motion-still segmentation algorithm and
its theoretical basis. Then, a typical application of the algorithm is presented: measuring the
increased spatial blurring of moving objects in an actual VTC/VT scene.

2. Motion-Still Segmentation Algorithm

A single digitized video image is simply an array of pixels. If one observes a sequence
of video images over time, changing pixel values can cpeaiteeived motion in the video scene.
The motion-still segmentation algorithm generates a binary motion mask which can be used to
separate those pixels that create perceived motion (motion pixels) from those pixel that do not
(still pixels). The input to the algorithm is a pair of digitized video images which temporally
bracket the image in question.

The motion-still segmentation algorithm involves several steps, depicted in Figure 1.
These steps are summarized here and described in more detail below. The algorithm first
calculates the absolute difference of the two input images on a pixel by pixel basis. The result
is an absolute difference image. Each pixel of the absolute difference image is then compared
to the motion detection threshold. This thresholding stage results in a binary difference image.
Finally, this binary difference image is operated on by a dilation operator and an erosion operator
in order to smooth and fill the final motion mask.
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Figure 1: Motion-Still Algorithm Conceptual Block Diagram

2.1 Absolute Difference

Video imagery is inherently discrete in time. In North America, each pixel is sampled
30 times per second. Thus, we can describe a digitized video scene as a multi-dimensional
time series with sample frequency of 30 Hertz. Just as changes in continuous data can be
detected by differentiation, changes in a time series can be detected by a finite difference.

In order to detect motion pixels in the k™ frame of a digitized video scene, F(k), we
calculate the temporally symmetric finite difference, F(k+d)-F(k-d). With d=1, one detects
motion which occurs on the time scale of 66 milliseconds. We have found that this value of
d is appropriate for detecting motion which is typical in VTC/VT imagery. Further, we have
found that the motion detection performance of the algorithm is basically independent of d
for d values of 1,2, and 3. In light of these facts, and in the interest of simplifying data
acquisition, we use d=1 for the remainder of this paper.



In digitized video sequences of real world imagery, time has no preferred direction. This
means (at least in terms of motion detection) that the information contained in F(k+1)-F(k-1) is
no different from the information contained in F(k-1)-F(k+1). But these two difference images
differ by a sign. We conclude that the sign of the difference image contains no useful
information. An analysis of the distribution of pixel values of F(k+1)-F(k-1) reveals that indeed,
the distribution is symmetric about zero. In light of this, and in order to simplify the algorithm,
we compute the absolute difference image,

D k) =|F(k+1) -F(k-1) |. (1)

2.2 Motion Detection Threshold

The absolute difference image D(k) is made up of pixels with values that can range from
zero to maximum white level. If the video image in question had infinite SNR and noise-free
equipment were available, then if any pixel of D(K) had value zero we would classify the
corresponding pixel of F(k) as a still pixeL.onversely, any pixel of D(k) with a non-zero value
would indicate that the corresponding pixel of F(k) should be deemed a motion pixel. In a real
video system, lighting fluctuations, camera and system noise, and A/D conversion combine to
give small non-zero pixel values in still areas of D(k). The result is a non-trivial pixel
classification problem: Given the value of a pixel of D(k), should the corresponding pixel of
F(k) be classified as a motion pixel or a still pixel?

The answer to this question comes from the theory of binary hypothesis testing or signal
detection theory. We must test the hypothesis "pixel is a motion pixel" against the hypothesis
"pixel is a still pixel". In terms of signal detection, the motion pixel is signal which must be
detected in the presence of noise. The procedures and results of the two approaches are the same,
only the terminology differs. In the following we use the terminology of binary hypothesis
testing.

Binary hypdhesis testing requires knowledge of the statistics of the data under both
hypotheses. Ithis instance, it requires the statistics of pixels of D(k) when they correspond to
motion pixels in F(k) and when they correspond to still pixels in F(k). The statisticasaf
pixels are described by their probability density function (pdf). To obtain an approximate pdf
for a large data set, we simply normalize the data histogram so that it integrates to one.

First we collect data for the two hypotheses. For the still hypothesis, this is done by
recording 10 different video scenes which contain no intentional motion. These scenes include
a snow covered tree (very high contrast), indoor scenes of furniture and people, a detailed black
and white diagram and some typical VTC/VT scenes. The VTC/VT scenes were shot under 3
lighting conditions: high level incandescent lights mixed with sunlight, fluorescent lighting, and
low level incandescent lighting combined with 18 decibels of camera gain, resulting in very noisy



video images. Ten video scenes are also used as a data set for the motion hypothesis. To insure
that all pixels of these scenes contain apparent motion, each motion scene includes either a
camera pan or a camera zoom in addition to any other motion inherent in the scene. The scene
content is similar to that of the still scenes.

Next we digitize the scenes (756 by 486 pixels, 8 bits per pixel) and calculate one
absolute difference image for each of the 20 scenes. logariplots of normalized pixel value
histograms of these 20 absolute difference images are shown in Figure 2. Notice that, as
expected, the still pixel histograms faff much more rapidly than the motion pixel histograms.
This indicates that large values of absolute pixel difference are probable only when motion is
present. The relatively clean and complete clustering of the two classes of histograms in Figure
2 indicates that a histogram based binary hypothesis test is feasible.
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Figure 2: Histograms of Absolute Difference Images

Since each digitized image contains 330,000 pixels, (areas near image edges are
excluded) our data set consists of 3.3 million still pixels and 3.3 million motion pixels.
Normalized histograms of these two data sets are shown in Figure 3. We now have a good
characterization of the data (absolute pixel difference) under each of the two hypotheses ("pixel
is a motion pixel" and "pixel is a still pixel") we wish to test.
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Figure 3: Averaged Histograms of Absolute Difference Images

Next we divide the still pixel histogram S(p) by the motion pixel histogram M(p) over
the range where M(p) is non-zero. The result is the likelihood ratio:

L(p) =S p)/ M p). (2)

For our data, the likelihood ratio is a strictly decreasing function of pixel value. This
observation, coupled with the Neyman-Pearson lemma (see for example, Srinath and
Rajasekaran, "An Introduction to Statistical Signal Processing with Applications", p. 70.), tells
us that the "best test" (or best classification algorithm) for our data can be implemented by
comparing each pixel value to a single threshold:

p<t = pixel is a still pixel :

p>t = pixel is a motion pixel , 3)

for some threshold t



In any non-trivial hypotesis testing problem there is non-zero probability of making an
error. In our problem, a "false alarm" occurs when the test decides that a pixel is a motion pixel
when in fact, it is a still pixel. The other possibteor is a "miss”. This term is used to describe
the situation where a pixel is a motion pixel but the test classifies it as a still pixel. In general,
when designing a binary hypothesis test, one must trade off false alarms and misses. A
conservative test may have a very low probability of creatifiadsa alarm (P ) but this desirable
trait is almost always accompanied by the undesirable trait of a high probability of pmiss (P ).
Conversely, a test that hasosv P,, usually has a high,P . For any threshold valug t, P and P
are given by,

P () =2 [S(p) dp,
L (4)

P =5 [Mp) dp.
0

We can now define the meaning of the phrase "best test". To say that the best test for our
data is described by equation 3 means that of all possible binary hypothesis tests wiitie =
single threshold test of equation 3 minimizgs P . This is true for all valuesFigure 4 shows
how R, and P vary as a function of the threshold, t.

These curves make clear the trade-off betwgen P .and P . As the threshold is raised, less
motion is detected, P is decreased hut P is increased. Notice that for this dgta set, P drops
rapidly as the threshold is increased, byt P starts at a relatively high value and increases only
slightly. This is due to the large overlapping lobes of probability mass in the two histograms.
In spite of this inherent trade-off, the Neyman-Pearson lemma assures us that if we pick a
threshold to achieve some acceptable valug dhen, this simple, single threshold test provides
the smallest P adny binary hypothesis test with that same valuepf P .

It is clear that how one selects a threshold will depend on how one weights the relative
consequences of false alarms and misses. In this particular motion detection problem, misses are
less problematic than false alarms. This is because the subsequent processing steps of dilation
and erosion tend to fill in missed motion pixels. Binary difference images are generated from
absolute difference images by replacing pixels which exceed threshold with white pixels and
pixels that do not exceed threshold with blpdtels. Based on visual inspection of these binary
difference images, we conclude that a threshold of 15 with the assocjated® =10,, and P =.3is
a reasonable operating point. This theoretical valug of P translates to an average of roughly 100
false alarm pixels (those that show up as white in the binary difference image even though they
are not true motion pixels) per video image. We observe 20 to 40 false alarms per image.
Misses manifest themselves as loss of detail in areas that are known to be moving. This effect
is harder to measure visually than false alarms, but the level of detail we observe is acceptable.
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Figure 4: Motion Detection Performance versus Threshold
2.3 Dilation and Erosion

The effects of missed motion pixels and false alarm motion pixels can be partly corrected
through the use of specific dilation and erosion operators. Theseoopg@berate binary output
images from binary input image&eneral dilation and erosion operations on binary images are
described in Giardina and Dougherty, "Morphological Methodis\age and Signal Processing".

For processing binary difference images, we use a three by three array of white pixels as the
structuring element (or kernel) for both dilation and erosion.

The end effect of dilation with the chosen structuring element is that if the input pixel or
any of its eight immediate neighbors is white, then the output pixel corresponding to that input
pixel will be white. (Pixels on image boundaries have fewer than eight immediate neighbors.)
We can also describe this dilation in the language of digital logic. With white interpreted as a
logic HI and black as a logic LO, the dilation operation is simply a nine input OR gate operating
on a square neighborhood of nine pixels. The output of this OR gate is fed to the central pixel
in the neighborhood. This operation tends to fill in rough edges, isolated black areas, missing
motion pixels, and interlace artifacts. Also, white objects tend to grow by one pixel. A larger
structuring element or iterated dilations could be used to make these effects more pronounced.



The three by three element and the single iteration serve our purposes well.

The erosion operation is somewhat complementary to the dilation operation. The rule for
the chosen erosion operation is that if an input pixel and all eight of its immediate neighbors are
white, then the output pixel correspondinghattinput pixel will also be white. Again, in terms
of digital logic, the erosion operation is simply a nine input AND gate operating on a square
neighborhood of nine pixels. The output of this AND gate is fed to the central pixel in the
neighborhood. The erosion operattends to compensate for the increased sizes of white areas
caused by the dilation without negating the other dilation effects. Again, a larger structuring
element or iterated erosions would provide more pronounced effects. We have found that a
single erosion is well matched to the single dilation which precedes it.

3. Application to VTC/VT

The motion-still segmentation algorithm described in section 2 was applied to an actual
VTC/VT scene. This scene not one of those used to derive the motion detection threshold. The
ability of the algorithm to detect various amounts of motion was examined. The algorithm
behaved as expected and successfully detected very small amounts of motion (such as the motion
of eyelids or lips) while simultaneously maintaining a low false alarm rate. By using the motion-
still segmentation algorithm in conjunction with previously developed measures of edge
sharpness (see ANSI T1Q1.5/90-123, entitled "Features for Automated Quality Assessment of
Digitally Transmitted Video"), the increased spatial blurring of moving objects in the VTC/VT
scene was measured. The motion-stilhsegtation algorithm allows one to measure the spatial
blurring of the motion and still portions of the image independently.

The top images in Figures 5, 6, and 7 show three different motion characteristics present
in typical VTC/VT scenes. The motion present in the original input scene was lip and eyelid
motion (Figure 5, top image), arm and hand motion (Figure 6, top image), and upper body
motion (Figure 7, top image). The effects of interlaced camera scanning can be seen in the hand
(Figure 6) and the notebook (Figure 7). The motion-still segmentation algorithm was applied
to the input video scensbown in the top images of Figures 5, 6, and 7. The middle images of
Figures 5, 6, and 7 show the corresponding binary difference images and the bottom images of
Figures 5, 6, and 7 show the resulting motion masks. In the motion masks, white areas are areas
of motion and black areas are still arel®te that the effects of interlaced scanning, seen in the
binary difference images in the middle, are removed by the dilation and erosion steps and are not
visible in the motion masks on the bottom. Figure 5 demonstrates that the algorithm successfully
detected lip and eyelid motion (bottom image).

The motion mask obtained from upper body motion (bottom image in Figure 7) was
applied to the original input image and the corresponding VTC/VT codec output at rate DS1/4
(384 kbps). The top row of Figure 8 shows the original input (left) and the VTC/VT codec



output (right). The middle row of Figure 8 shows the images of the top row as viewed through
the motion mask. Areas that did not contain motion are shown as black in the middle row. The
bottom row of Figure 8 shows the still portion of the images in the top row of Figure 8. Here,
motion areas are shown as black. Note the increased blurring of the motion areas in the codec
output image. Also note that the still backgrodoés not suffer as much blurring as the motion
areas in the codec output.

The Sobel edge sharpness measure (described in ANSI T1Q1.5/90-123) was applied to
the images in the top row of Figure 8. The resulting images are shown in the top row of Figure
9. The motion mask was then used to separate the motion and still portions of edge energy. The
middle row of Figure 9 shows the edge energy of the motion portion (original on the left, codec
output on the right). The bottom row of Figure 9 shows the edge energy of the still portion. The
edge energy is shown both graphically (as white in the images) and numerically (as the sum of
the squares of the pixel values). The edge sharpness measure for the motion part of the original
image was 1.60 x £0 (middle row, left image) while the edge sharpness measure for the motion
part of the codec output image was 0.74% 10 (middle row, right image). This is a 54% decrease
in edge energy. The edge sharpness measure for the still part of the original image was 4.19 x
10 (bottom row, left image) while the edge sharpness measure for the motion part of the codec
output image was 3.73 x40 (bottom row, right image). This represents a decrease of only 11%.
Thus, this VTC codec is doing a much better job of encoding stationary edges than moving
edges. Overall, the total edge sharpness energy goes from 5%9 x 10 in the original image (top
row, left image) to 4.47 x £0 in the VTC/VT codec output image (top row, right image). This
gives an overall decrease of 23% in edge sharpness energy.

4. Conclusion

The motion-still segmentation algorithmet or exceeded all expectations. Applying the
algorithm to a typical VTC/VT scene resulted in the successful separation of the motion portion
of the scene from the still portion of treese. The algorithm was sensitive enough to detect lip
and eyelid motion.

The motion-still segmentation algiinm has been fully automated and is currently being
applied to the objective parameters in ANSI T1Q1.5/90-123 (which have also been fully
automated). Objective measurements are being performed on 7 subjectively rated test scenes that
have been NTSC, VHS, or DS1 encoded. Analysis of the results will include correlation of the
objective measurements with the subjective ratings to insure that future recommendations of
objective measurements for the VTC/VT draft standard accurately measure user-perceived
quality. It is anticipated that preliminary results can be presentied Afpril meeting of T1Q1.5.



Figure 5. The performance of the motion-still segmentation algorithm for lip and eyelid motion. Top - original
Input image. Middle - binary ditference image. Bottom - motion mask.
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Figure 6. The performance of the motion-still segmentation algorithm for arm and hand motion. Top - original
input image. Middle - binary difference image. Bottom - motion mask.
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Figure 7. The performance of the motion-still segmentation algorithm for upper body motion. Top - original
input image. Middle - binary difference image. Bottom - motion mask.
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Figure 8. Application of motion mask to original input image (top row, left image) and DS1/4 codec output
image (top row, right image). Middle row - motion only portion. Bottom row - still only portion.
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Figure 9. Application of motion mask for measuring spatial blurring of moving and stationary objects. Top row
- Sobel filtered version of images in top row of Figure 8. Second row - motion only part. Bottom row
- still only part.
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