COMMITTEE T1
CONTRIBUTION

Document Number: T1Q1.5/91-134

e ke ok ke okeshesfe sk s sk sk e sk ke ske sk ok sk sk e e e e ok sk s sk ke ok sk e e e sk sk e ke st sk sk ke st sk sk sk ok sk st s sk e e sk sk e sk e sk sk sk e e s s ok sk sk sk sk sk sk sk sk sk sk sk sk

STANDARDS PROJECT:  Analog Interface Performance Specifications for Digital
Video Teleconferencing/Video Telephony Service

e e sdeste et ek s s sk sk sk e ke ke sk ok sk sk ok sk sk s sk sk sk e e s e s e e sk s se s ke sk sk sk ok sk sk sk o ook sk sk sk ok s sk sk s sk e e sk sk sk sk sk sk s sk sk sk ok ok sk sk e ok ke sk

TITLE: Technology-Independent, User-Oriented, Objective
Classification of Voice Transmission Quality
3k 3k e sfe ke ke s ok e ok ok ok e e e she sk ke sk sfe ke S fe s e ok ke s e e sk e sk e sk ke sk ke sk ke sk sk ok ke sk ke sk sfe sk e shesfe sk ke sk sfe sk s sk sk sk sk s sk ok sk ke s sk ok sk sk sfe sk sk e sk ok

ISSUE ADDRESSED: Objective Methods for Measuring Voice Quality of VTC/
VT systems

ook sk she e sheoke ook she e sk ke e sk e sk ke e ok ke sk ke o ke e sk sk s e sk sk s sk ke e st ke s sk sk s sk e e sk e s sk ke ke seshe sk sk ke sk sk sk sk ok sk ok sk sk sk sk e sk sk sfe sk se sk sk ke sk

SOURCE: NTIA/ITS - R. Kubichek

seske sk ok ek s ok she ke sk sk she ke sk sk skeske e sk ke sfe sk sk e ke e e e s sk e ke ke sk s sk sk ke e ok s s s she ke e e e sk sk e s ke e sk ok sk e sk sk sk sk sk sk sk sk skeske sk ke sk sk sk sk sk

DATE.: September 30, 1991

st sfe sk e ok e ke s s she ke e sfe e ke fe e sk sk sk s sesfesfeshe ke e sk sk sk ok ke sk sk sk ok sk she ke sk sk sk sk sk sk sk s sk ok ok sk s sk sk sk s sk sk sk sk ok sk sk ok s ke ok sk sk sk sk sk sk ke sk sk sk ok

DISTRIBUTION TO: T1Q1.5

S s sk s sk o e sk e s ke s sk e ke ke e sfe sk e s e e e s ke ok sk s s ke sk sk sk s e e ke sk sk s e she sk sk s s e ke e e sk s s e sk sk sk s sk e ok s sk sk sk ske sk sk sk sk sk sk e sk sk sk sk

KEYWORDS: Voice Quality, Audio Performance Specifications,

Objective Quality, Subjective Quality

Sestesfe e deske ok sk s ok oot sk obe sk sesbe sk ke sk sk ke sk ek s sk e e sk s st o e s ke s sk e sk sk e ok se ok se ke sk e sk s ok ek sk sk sk s sk s s sk sk sk sk sk sk ok ok ok sk sk sk

DISCLAIMER:

e e ke she o se e o ke sk sk ok e e s s e e sk sl fe e e sk s e sk s e sk s ke st sk e sk s e sk s ke s s ke sk s ke sk s e sk sk s sk sk e e sk s e sk sk s s sk sk e sk sk sk sk e sk ske sk sk sk ok



Introduction

This contribution presents an overview of voice quality assessment methods
being discussed and considered in T1Y1.2. The contribution is presented to the
T1Q1.5 VTC/VT Sub-working Group to assist in the development of the audio
performance specifications for the VI'C/VT draft standard.



Committee T1Y1 T1Y1/91-083

T1Y1.2/91-016R2
T1Y1.2/90-061R1
July 31, 1991
Contribution to Working Group T1Y1.2
Project: T1Y1 20 / Objective Assessment of Voice Quality
Title: Technology-Independent, User-Oriented, Objective Classification of Voice

Transmission Quality

Contact: R. Kubichek
ITS.N3
Institute for Telecommunication Sciences
National Telecommunications and Information Administration
U. 8. Department of Commerce
Boulder, CO 80303
Phone (303) 497-3594
FAX (303) 497-5323






TABLE OF CONTENTS

ABST T RACT ...ttt e e e e 1
1. Introduction ........ ... ... . 1
L1 Motivation ....... ... . 1
1.1.1 Compelling Need for Objective Voice Quality Assessment . . .. ... 1

1.1.2 Benefits Expected From Such A Technology ................. 2

12 Project Goals ........... ... ittt 2
1.2.1 Assess Current Objective Techniques ...................... 2

1.2.2 Advance the Technology Where Needed .................... 3

1.2.3 Alternate Applications ....................couurrnnn. .. 3

13 Synopsisof Results .............. ... ... .00 . 3
2. Objective Voice Parameters ...................cuuuuunirnunnnnnnnn .. 4
21 LPCParameters .................couiiuiuinnununnnununnnni . 4
2.2 PARCOR Coefficients . . ..............uuuieiuuunnnn . 5
2.3 Cepstral Coefficients .................... i, 5
24 LogAreaRatio . ......... ... ... .. 5
25 Inverse Sine .. ... ... . 6
2.6 Autocorrelation Coefficients ......................... 000 ... 6
2.7 SpectralMeasures ...................iiit 6
2.7.1. Percentile Frequencies. ................................ 6

2.7.2. Average Power Weighted Frequency ...................... 7

2.7.3. Spectral Flatness Measure . ... .......................... 7

2.8 Residual Measures .. ..............0ouiuinumnnnnnni, 7
2.9 Distortion Measures . .. ............uvuitiununnnnnn 7
29.1 LoDistances . ............cooiiuiuiininennnnnnn. 8

29.2 SignaltoNoiseRatio .................................. 10

293 ItakuraDistance ................. .. ... ... .. ... 10

2.9.4 Coherency Based Measures ............................. 11

2.9.5 Cross Residual Signal .. ............................... . 11

2.10 Parameters Being Considered by CCITT ..............ovuuvn.. .. 11
2.10.1 Cepstral Distance (NTT) . ... ....ovviermnn e, 12

2.10.2 Information Index (France) ................oouurunnnn.. 12

2.10.3 Coherence Function (BNR) ..............0uvuurununno... 14

2.11 Models for Voice Quality ..................0ouurininininnnn .. 15
3. Pattern Recognition Based Assessment (NTIA) ............................ 16
3.1 Requirements and Assumptions ................................. 16
3.1.1 Source Speech . ........... ...t 16

3.1.2 Equipment Requirements ............................... 16

3.1.3 Training Speech Database .............................. 17

3.14 Data Preconditioning .................................. 17

3.2 Selecting Effective Objective Parameters .......................... 18
3.2.1 Bottom-up Search Algorithm ............................ 18

3.2.2 Parameter Performance Metrics .......................... 19

3.3 Statistical Assessment Method . ................................. 19



33.1 System Training . ... .........00ttiitiininnnnnannenn.. 19

3.3.2 Opinion Score Probability .................. ... ... ...... 20

3.3.3 Mean Opinion Score Prediction . .......................... 20

3.3.4 Discussionofthe PRMethod ............................ 21

4. Alternative Applications . ........ ... i i i e 22
5. Validation of Objective Methods . .............. ... ... .. .. i, 22
5.1 Subjective Test Performance .................c.0iitiiiiinennnnn. 22

5.2 Objective Test Performance ...............c.ciuiiuininnrinnnennns 23

53 Test Results ... ......... ... ... i iitinnernnennnns 26

531 CCITT Database . . ............cciiiiiuinreneernnennnnnn. 26

532 Comsat Database ...................0iiiiiiiennnnnn. 26

53.3 BellLabs Database . . ... ............. ...t iiiinnnnnn. 26

5.3.4 Discussionof Test Results .............................. 26

6. Standards Development . ............ ... .. .ttt iiititininennnnnenns 28
6.1 Standards Planning ............. ... iiiiiinininnnnnennnnnn. 28

6.2 Development Effort ............. ... ... .. .. . i i, 28

Lot T 5 7 7T, + N 29

70 Future Work . . ... ... i i i i ittt ittt eaannennn 29
REFERENCES .. .. ittt titeeeeeeaeasoneneeennannn 30

iv



ABSTRACT

This report examines techniques for automatic assessment of voice transmission quality.
Such an "objective” measurement system could augment or replace the use of "subjective"
listener panels in many situations. Potential benefits include improved procurement of voice
systems and services, reduced equipment development costs, and wide accessibility of the
system to users who otherwise might not afford extensive use of listener scoring.

Traditional objective systems have used analog-based parameters such as loss, noise, and
talker echo to estimate transmission quality. Although effective for analog transmission
systems, these models are not applicable to new digital voice technologies. Objective voice
parameters such as cepstral distance, information index, and coherence function have been
developed to better characterize the quality of digitally transmitted speech. This report
summarizes the current state of objective voice quality assessment. A survey of objective
parameters is presented, as well as a new pattern recognition-based method to estimate
quality based on multiple objective parameters. The report includes a synopsis of recent test
results comparing four objective assessment systems being considered by CCITT. The four
methods are the Cepstral Distance (NTT, Japan), Information Index (France), Coherence
Function (Bell Northern Research, Canada), and Pattern Recognition (NTIA, United States).

Each of these methods has produced excellent results for certain test cases. However, no
method has demonstrated consistently good assessment accuracy across a wide variety of
degraded speech, and algorithm performance appears to depend on the voice technology
being used. Thus, as long as the scope of the test can be confined to speech degradations for
which the objective measure is known to be effective, objective assessment techniques can be
used reliably and accurately . A truly technology-independent objective measure remains a
goal for future research.

1. Introduction
1.1 Motivation

1.1.1 Compelling Need for Objective Voice Quality Assessment

This Nation’s once-unified telephone network is rapidly evolving into a collection of
technologically-diverse, independently-operated, competing public and private networks.
Effective interoperation of the evolving networks under a wide range of conditions is
essential. It will require that network planners and operators have a common means of
rapidly, accurately, and automatically assessing voice transmission quality as perceived by
end users.

Effective procurement of equipment and services relies on using accepted performance
measures to accurately compare competing products. Voice quality is an important measure
of performance for voice equipment and services. Quality measures based on listener scores
such as Mean Opinion Score (MOS) or Diagnostic Acceptability Measure (DAM) are well
known. Unfortunately, the time and expense associated with designing and conducting these
tests limit their wide application. As a result, procurement decisions may be based on
criteria unrelated to end user satisfaction. The rapidly expanding market for voice transmis-
sion related services and equipment highlights an urgent need for a standard objective voice
quality measure.

An important function of domestic and international standards organizations is to define
standards for new and existing technologies in voice coding and transmission. Selecting a



single algorithm from among several candidates for standardization presents a very difficult
task. Though listener scores are used successfully as a measure of algorithm performance,
designing and implementing an acceptable test plan can strain the resources of member
organizations. An accurate and automatic standard measure of voice quality could speed
development time and reduce the costs of creating new standards. While current techniques
may not be sufficiently accurate to replace all listener panel scoring, they can be extremely
useful in the design and execution of subjective listener tests.

1.1.2 Benefits Expected From Such A Technology

Convenient access to a standard objective voice quality measure would furnish providers
of voice equipment and services a tool to maximize their products’ ability to compete in the
marketplace. When listener scores are the sole means of gauging performance, the expense
and time required for testing can impede product development. Relative low cost and fast
turnaround of an automated measurement system could make voice quality assessment
accessible to a wide range of users who currently cannot afford the costs associated with
listener scoring.

Cost effective design and implementation of new voice technologies will benefit from
efficient and accurate objective methods of assessing voice transmission quality. A voice
quality measure can be used during the design phase of a product as an optimization
parameter, i.e. the design can be iterated to achieve the best voice quality. Similarly, these
system parameters can be adjusted during implementation and operation to maintain a
consistent high level of voice quality performance.

Finally, as mentioned earlier, procurers of voice communication equipment and services
would benefit from the availability of a standard objective performance measure. The
standard would facilitate comparison of competing products in light of individual communica-
tion needs. Since it appears that objective measures currently lack the reliability of
subjective test scores, such a standard would have to carefully define the scope of application
to avoid misinterpretation of the objective scores.

1.2 Project Goals

1.2.1 Assess Current Objective Techniques

Objective parameters for voice quality estimation have been proposed and studied by
numerous researchers. While some of the parameters were created specifically for voice
quality assessment, many were originally developed in related fields such as speech recogni-
tion, speech coding, and speaker recognition. Excellent surveys of objective parameters are
given by [1]-[5], [60] and are summarized in this report. In addition, four objective assess-
ment methods being considered by CCITT SG XII for standardization are described in detail.
These algorithms are compared using test results from a recent CCITT test which included
a variety of impairment conditions and languages.

No widely accepted method exists for quantifying the performance of objective assess-
ment techniques. Before performance goals can be set for objective techniques, the issue of
performance measurement must be addressed. This report therefore proposes methods to
measure objective assessment accuracy and suggests targets for acceptable performance.

The performance goals for objective assessment systems depend on their intended role.
If the objective method is desired as a replacement for human listener panels, very stringent
requirements must be set. On the other hand, alternate uses such as augmenting subjective
test design may not demand such close precision. Several alternative uses for objective
assessment are introduced.



Acceptable agreement between listener scores and objective quality scores must be
demonstrated before the algorithm is useful. An objective of this project is to benchmark the
performance of proposed algorithms and determine the limits of their applicability. Results
of applying objective methods to three different speech databases are presented to determine
how well current methods perform. '

1.2.2 Advance the Technology Where Needed

Some proposed objective measures have shown good correlation with subjective scores for
a variety of distortions but require further study to determine their effectiveness over a wide
variety of conditions and impairments. To achieve sufficient robustness and accuracy, it may
be necessary to use a multivariate approach integrating these and other parameters into a
single framework. This would exploi- the best features of each objective measure to obtain
maximum assessment performance. Regression techniques are the best known approach to
this problem, but have inherent disadvantages. These include the requirement for a-priori
knowledge of the regression model, and inability to adjust automatically to new parameter
sets. Section 3 describes a pattern recognition-based technique developed by NTIA that
applies Bayes estimation techniques for improved multivariate assessments which avoids
these problems.

1.2.3 Alternate Applications

The most obvious use for objective assessment is to replace subjective listener panels.
Questions about reliability may limit this application. However, a number of alternate
applications are suggested which may provide many more significant near-term benefits. In
these applications, the objective measure would be used as a tool to aid in subjective test
design and verification, as well as in the development of source speech material.

1.3 Synopsis of Results

This report discusses the motivation for objective voice quality assessment, and many of
the proposed methods for accomplishing it. Many objective voice quality parameters have
been proposed in the literature and are summarized in this report. The study by Barnwell
et al [4]-[5] suggests, however, that most are not effective predictors of subjective quality
when applied to broad classes of voice impairments. A few methods have shown promising
results, however. One of the best simple objective measures is cepstral distance (CD). More
complex algorithms use perceptual weighting functions in time or frequency to yield more
accurate voice quality predictions. They include the information index, coherence function,
and Bark spectral distortion measure.

Much of the focus of this report is on the four objective methods being considered by
CCITT Study Group XII: cepstral distance, information index (II), coherence function (CF),
and pattern recognition (PR). Each of these methods has produced excellent results for
certain test cases. However, no method has demonstrated consistently good assessment
accuracy across a wide variety of degraded speech. In other words, algorithm performance
appears to depend on the voice technology being used. Thus, as long as the scope of the test
is confined to speech degradations for which the objective measure is known to be effective,
objective assessment techniques can be used reliably and accurately. A truly technology-
independent objective measure remains a goal for future research.

Specific conclusions are summarized as follows:
N Methods to measure the performance of objective methods are needed to provide a
meaningful basis for comparison. The squared correlation coefficient, p?, has been
used in the past as a measure of performance. To help clarify the meaning of p?, a



measure of root mean-squared error (RMSE) is described in Section 4.2 which is
directly comparable to the listener panel standard deviation values used to quantify
subjective test precision. Under a few general assumptions, the correlation of
objective assessments with subjective scores must have values of p?=.95 or more to
achieve accuracy comparable to a subjective test using 20 listeners.

J The cepstral distance, information index, coherence function, and pattern recognition
methods have been tested on a variety of speech databases in an effort to measure
objective assessment performance. Although somewhat inconclusive, the results can
be summarized as follows: For the CCITT database containing North American
English (NAE), Italian, and Japanese speech, the CD and II methods provided best
results with typical p* values in the range of .85 to .95. For the Comsat and Bell
Labs data (containing only English speech), the PR method performed best with p? of
.8 to .9. When the PR method is trained using a small subset of the NAE data,
correlations of .94 to .97 are achieved for 3 out of 5 languages. This assumes a
parameter set consisting of the CD and II. Therefore, in tests where the impairments
are related to the training data conditions, the PR approach may offer the accuracy
needed to replace subjective testing.

. In addition to its potential role of replacing listener panels, three alternative applica-
tions for objective assessment methods are presented. These include assisting
subjective test design, validating subjective test results, and guiding the design of
source speech material. Significantly, these applications do not demand the high
level of accuracy required for subjective testing, and represent immediate and
important uses for currently existing objective measures.

It is the conclusion of this report that current objective assessment techniques may not
possess the required precision or dependability to replace human listener panels in all cases.
However, important alternative applications can immediately benefit from objective testing.
It may be appropriate, therefore, to pursue a standard for objective voice quality assessment
to address these alternative applications. Indeed, CCITT Study Group XII is likely to
develop a recommendation consisting of some or all four of the proposed algorithms by the
end of the Study Period, 1988-1992. Since the developers of all four assessment systems
actively participate in CCITT SG XII, it is recommended that T1 closely monitor the ongoing
work at CCITT in this area and participate in the development of international recommenda-
tions for objective voice quality.

2. Objective Voice Parameters

Objective parameters are sought that are useful for a broad range of voice applications.
Ideally, the parameters should not make excessive computational demands, yet should
correlate with human perception of quality for all distortions likely to be found in the
communication system being tested. Different communication systems may call for different
objective parameters to achieve best results. As mentioned earlier, a large number of
parameters have been proposed and described in the literature. The parameters described
below have been extracted from a variety of fields related to speech processing, voice
compression, and speaker recognition. Surveys of these can be found in [1]-[5], [17], [24],
and [50].

2.1 LPC Parameters

Linear Predictive Coding (LPC) coefficients are important in areas of spectral estimation
and speech coding. By modeling the speech as an autoregressive process, speech frames may
be represented using only LPC information. The basic model is given by:



¥ =Y ayt-t)+e &)
i=]

where y(t) is the voice signal at time t, and a, represent LPC coefficients. Although speech
can be encoded using only LPC coefficients, the quality of reproduced speech is not perfect.
This indicates that some quality information is lost and that, by themselves, the LPC
coefficients are not entirely adequate objective parameters. Furthermore, Pfeifer [8] showed
that LPC coefficient distances yield poor results for speaker identification applications.
Goodman et al [9] also reported marginal success using LPC distances for objective voice
quality.

2.2 PARCOR Coefficients

Partial correlation coefficients, or PARCOR coefficients, can be derived directly from the
LPC coefficients. They are equal to the negatives of reflection coefficients and have a
physical interpretation as the parameters of an acoustical tube model of speech. The i-th
PARCOR coefficient, k;, also has meaning as the correlation between y(n) and y(n-i) with
correlation of y(n-1) through y(n-i+1) removed.

The PARCOR coefficients are more popular for use in voice synthesis applications than
LPC coefficients because of their improved numerical stability. There is ample evidence that
these parameters contain important speaker dependent information not contained in
fundamental frequency or gain related parameters [10].

PARCOR coefficients can be derived from LPC coefficients recursively as follows:

1) set ki =8
2)ay=(ay+18,8,)/(1-k) forj=1,2,..,i-1
3) Repeat steps 1 and 2 for i = 1, 2, ..., p, where p is the model order.

2.3 Cepstral Coefficients

The complex cepstrum is obtained by taking the inverse Fourier transform of the log
magnitude of the Fourier transform of the speech frame. This process has the effect of
separating glottal and vocal tract information from the excitation signal. In the cepstral
domain, the first 3-4 ms corresponds to glottal and vocal tract effects, while the rest corre-
sponds to pitch information. The cepstrum is used in pitch and formant estimation, and in
elimination of fixed time echoes in speech signals.

The cepstral coefficients, h(n), can be derived directly from LPC coefficients [11]-[13]:

n-1
h(n) = a,+Y (k/n) h(k) a,, for n>0 (2)
kel
Cepstral distance measures can be computed as a difference between input and output
speech cepstral coefficients. Cepstral distance equals the average distance between ceps-
trally smoothed log input and output spectra. The distance values are useful in speaker
recognition problems and have been fruitful as voice quality parameters [2], [13]. The
cepstral distance measure is further discussed in Section 2.10.1.

2.4 Log Area Ratio

Log area ratios correspond to the log of the area ratio of adjacent sections of a lossless
tube model of the vocal tract [11, p440]. They display relatively flat spectral sensitivity to
quantization error, that is, LPC spectrum distortion is uniform for all values of the log area
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ratios [13, p131]. In contrast to reflection coefficients, which become unreliable as their
magnitude approaches unity, the log area ratio is a nonlinear transformation expanding the
region near ki=1. This mapping reduces the likelihood that quantization error will move a
pole onto or outside of the unit circle and cause instability. Because of this improved
stability, log area ratios are sometimes preferred over other speech parameters, especially for
small word size. They have not received much attention as voice quality parameters, though
Barnwell and Voiers [4] stated that the best simple measure they found was a log area ratio.
In addition, the log area ratio out-performed the best simple spectral distance measure in
their tests.

Log area ratios are calculated from either LPC, a, or PARCOR, k,, coefficients as follows
[11]-[13]:

g; = Log(a,.,/a) = Log 1-k , 1<i<p 3
1+k,
2.5 Inverse Sine

Inverse sine parameters are derived from the inverse sine of the reflection coefficients,

k;. They are similar to log area ratios in that they expand the region about k;=1 [13, p131).

2.6 Autocorrelation Coefficients

Several parameters are obtained from the speech autocorrelation function. The log of the
zero lag autocorrelation gives a measure of power in the frame. The ratio of the i-th lag to
the zero lag autocorrelation measures the overall rate of decorrelation of speech samples.
These time domain parameters are not generally used for voice applications, but have been
used in other areas such as seismic pattern recognition [14] and myoelectric signals [51]-[52].

2.7 Spectral Measures

The human ear performs crude Fourier analysis of in-coming sound pressure waves [15].
Phase information is largely redundant and speech intelligence is carried predominately by
the spectral envelope. This partially explains why frequency domain measures have better
correspondence to subjective measures of quality than time domain measures. Further,
among all frequency domain measures, spectral envelope parameters have been found to
correspond best to perception of quality [15]. A number of spectral measures are described
below.

2.7.1. Percentile Frequencies.

Percentile frequency measures describe the distribution of energy in the voice spectrum
and are sensitive to the presence of vowels, consonants, and correlated noise. The parame-
ters are derived as follows:

m N
Pn =3 S/ Y SEF)
ie1 inl
4)
F25 = m-Af such that p, = .26
F50 = m-Af such that p, = .50
F75 = m-Af such that p, = .75



where N is the number of frequency values, S(f) is the power spectrum and F25, F50, and
F75 are the resulting percentile frequency measures.

2.7.2. Average Power Weighted Frequency
A measure of the central mass of spectrum energy is given by:

AVPWF = Y. f,"P() | T, P(f) (8)

2.7.3. Spectral Flatness Measure

The degree of spectral flatness is an indicator of the maximum theoretical performance
of redundancy removing coders [15]. The more peaky the spectrum is, the more predictable
and redundant is the speech; flat spectra indicate little predictability or redundancy.
Coders based on removing this redundancy will perform best for speech with non-flat
spectra. A measure of spectral flatness is given by:

N N
SFM = UN - ¥ 8%) /[n sw]m )]
st k=1

which is a ratio of the arithmetic mean to the geometric mean. Larger values of SFM
correspond to vowels, while values near unity imply flat spectra such as occur with unvoiced
fricatives.

2.8 Residual Measures
Examination of the LPC residual provides information about the adequacy of the LPC

model. The residual, e(i), results from applying an inverse LPC filter to the data in each
speech frame:

e(i)=Y", a, yi-k) ()]

where y(i) is the speech signal. In some cases, the LPC model may not be adequate to fully
represent the data y(i). This happens, for example, when model order is chosen too low and
results in a correlated residual series. If the model is adequate to represent the data, the
residual will in general be white Gaussian noise. Residuals with non-Gaussian statistics
may indicate the type and degree of distortion. Potential voice quality parameters based on
the residual signal include spectral flatness, average power weighted frequency, and percen-
tile frequencies.
The kurtosis of the residual signal is based on the fourth central moment as follows:

kurtosis = E {(e(i) ~e0)*}/ {E (e()) -0 ®

where R and R, represent the residual and its mean, and E{} is the expectation operation.
Kurtosis is always 3.0 for Gaussian data and usually 4.0 or larger for voiced speech - this
indicates a "peaked" distribution with long tails. For unvoiced speech, the residual’s dis-
tribution is closer to Gaussian with kurtosis of 3.0 or less [16]. The presence of impulsive
type noise causes kurtosis values to increase significantly beyond 3.0 due to outliers in the
residuals. It is interesting that standard solutions of the LPC model assume Gaussian
residuals. Hence, kurtosis is indicative of LPC coefficient accuracy. The change of kurtosis
between the input and output signal provides a measure of distortion.

2.9 Distortion Measures

Distortion (or "distance") parameters directly measure the amount and type of distortion
between input and output speech signals. They are calculated as a difference or ratio of
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input and output speech parameters. Traditionally, these have been the focus of most
research regarding objective parameters for speech quality.

Although distortion parameters have received the most attention, a case can be made for
combining distortion parameters with parameters based purely on input or output speech.
For example, a useful parameter set might combine an amplitude level measure (based on
the input speech record) and a spectral distortion measure (derived from both the input and
output speech records). This combination would allow the algorithm to give different
weighting to spectral distortion of high amplitude frames, such as vowels, than to quieter
frames such as unvoiced fricatives.

2.9.1 L, Distances

Euclidean distances ("L, distances") have received much attention because of their conve-
nient physical interpretation. A more general distance measure is the L, norm distance.
Barnwell and Voiers [4] studied a broad range of parameters using several values for p and
determined that, for some conditions, p=8 provided the best assessment accuracy. Others
[17] argue that, due to high correlation between Euclidean distance (L,) and general L,
distances, use of p#2 may not provide any significant advantage.

Parametric L, Distances
Two types of parametric distances are described in [3]-[5], [17]. A "linear feedback"
measure is given by:

Vp
d, = [1/m Y | py@) - pxti) l’] ®)
iwl
where py(i) and px(i) represent output and input time domain parameters, and m is the
order of the parameter model. Parameter sets used for this distance measure could include
LPC, PARCOR, log area ratios, cepstrum, inverse sine, autocorrelation ratios, and others.
When cepstral coefficients are used in (9) with p=2, the distance measure has special
importance. It can be shown [17] to be directly related to the log of the difference of the
cepstrally smoothed spectra. A very efficient means of computing the log spectral distance
without estimation of the spectrum results from using LPC derived cepstral coefficients.
More importantly, studies show that this measure is an effective parameter for both speaker
recognition and objective voice quality prediction [2],[17]. Cepstral distance is one of the
objective parameters considered by CCITT and is discussed further in Section 2.10.1.
A "log feedback" measure is given by:
vp
- . . 10)
d, = |Um " |20Log |py<z>/pxm||']
iwl

As with the linear feedback measure, LPC, PARCOR, log area ratios, cepstrum, inverse
sine, and autocorrelation ratios can all be used in computing these distortion measures.

Spectral Distances
As already mentioned, most perceptual information is contained in the spectral envelope.

Measures of spectral distance have been more effective in applications of speaker recognition
and objective voice quality than time domain measures.
A "linear unweighted" L, norm measure is given by:
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L-1
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i=0

where S ; and S, represent the output and input power spectra at the i-th frequency, L is the
number of frequency points, and p is the distance norm. A "linear frequency weighted"
measure gives more weight to distortion in the regions of greater spectral energy:

Y1ip

L-1
E S:x' ) |Syi "Ss'lp

D, = Y i=0 12)

L-1
> S,

i=0 J

"Log unweighted" and "frequency weighted log" measures are given in (13) and (14):

( 2
) L1 (13)
D, = |VL-¥ |20-LogiS./ S,
1up
L-1
‘" 1
5,
i=0

Banded spectral distance parameters can be developed using equations (11)<(14) with a
preselected range of frequency indices. Such measures are sensitive to spectral envelope
distortion in different bands and can be weighted according to the perceptual importance of
individual bands. They can be used singly or in a multivariate scheme to estimate voice
quality.

Bark Spectral Distortion
A related objective method has been developed by Wong et al at the University of

California at Santa Barbara [55]. Prior to computing the spectral difference, the input and
output spectra are perceptually weighted according to a ‘model of the human auditory
system. The method takes into account the human ear’s nonlinear sensitivity to frequency
and amplitude. The Euclidean distance of the transformed spectra provides an objective
measure much more relevant to perceived quality than the untransformed spectrum. The
analysis involves the following steps:

1. The speech is processed through a filter bank composed of 15 critical bands whose center
frequencies and bandwidths were designed to mimic frequency resolution and masking
characteristics of human hearing. Essentially, the filter bank produces a Bark transforma-
tion to create a frequency-warped 16 point spectrum.

2. Each element of the 15 point spectrum is weighted to adjust for frequency-dependent
hearing sensitivity.



3. The resulting weighted spectrum is transformed from loudness level (in phons) to
loudness (in sones). This additional nonlinear weighting function accounts for the fact that
the amount of change in perceived loudness depends on the loudness level itself.

An objective voice quality parameter, called the Bark spectral distortion (BSD), is found
by computing the Euclidian distance between the resulting 15 point vectors from the input
and output speech. The BSD is then mapped to a MOS scale using quadratic regression.
Excellent correlations of between .92 to .98 were achieved for speech coding rates of 2.4 to
64 kbit/s.

2.9.2 Signal to Noise Ratio
Signal-to-noise ratio (SNR) has long been used as an objective parameter for measuring
voice quality. It can be computed as:

Y, xG@?
Y,y -=) ]

Although SNR is a useful measure of degradation for many types of analog voice transmis-
sion, numerous studies have shown its performance is poor for modern digital communica-
tion techniques - especially low to medium rate voice codecs [9],[17]-[20]. A better parame-
ter, commonly referred to as segmental signal-to-noise ratio (SNR,,,), is found as the average
of SNR values computed over speech frames. SNR,,, provides better performance than SNR,
but is not considered a reliable measure of voice quality for modern digital communications
systems.

SNR is more difficult to use than one would expect. The SNR calculation requires
accurate normalization of input and output speech levels using knowledge of the system
gain. If the output signal is corrupted by added noise or non-linear distortions, accura:e
measurement of gain may not be possible.

The SNR measure has other serious problems, including sensitivity to delay estimation
error and phase distortion. The delay between input and output must be measured and
removed before extracting distortion parameters. If the delay error is on the order of one
half of the dominant period, lower than expected SNR estimates could result even though the
actual SNR is quite high. This is because output and input signals are nearly 180° out of
phase (resulting in SNR as low as -6 dB, even with no distortion present). Additionally,
SNR-based measures are ineffective for coding techniques which do not attempt to replicate
the speech waveform, e.g., RELP or CELP coders.

SNR=10 Log,, (15)

2.9.3 Itakura Distance

Another important distance measure is the Itakura likelihood ratio [1],[4],[15],[22]-[24].
This measure is useful for speaker identification applications, and has been considered as an
objective voice quality parameter. The likelihood ratio is defined as the ratio of two energy
terms. The numerator is the residual energy of the output voice when processed by an
inverse LPC filter determined from the input voice. The denominator is the residual of the
output voice filtered by the inverse LPC filter determined from the output. The ratio can be
written compactly as:

LR = a, ‘R,'a,/a, ‘R, a, (16)

where a, and a, are vectors of LPC coefficients measured from input and output speech
frames, respectively. R, is the autocorrelation matrix measured from output speech frames.

10



When LR is unity, no distortion is present. A value of LR = 1.4 is a known threshold above
which perceived changes between the input and output speech is significant.

2.9.4 Coherency Based Measures

A class of spectral distance measures can be developed from the squared coherency
function. Bell Northern Research (BNR) has reported on the effectiveness of coherency
measures for objective voice quality measurement [25], [32], [33]. Coherency is sensitive to
nonlinearities and added noise in the channel, and is computed as:

. Y XY
P = IS,OF _ " an
SP5H ¥ XPOrY V.08

where S, (f) is the cross-power density spectrum, S (f) and S,(f) are the auto spectra of the
input and output signals, and X (f) and Y,(f) are FFTs of the n-th data frame of the input
and output speech respectively. The function y(f) plays the role of a correlation coefficient
defined at each frequency f. Objective parameters are obtained from coherency by using
linear unweighted and linear frequency weighted distances as described in (13) and (14),
with y*(f) replacing the arithmetic difference. Banded coherency measures can also be
obtained as described earlier.

A signal-to-distortion ratio measure (SDR) is computed as the ratio of coherent to non-
coherent power in the output signal:

G
SDR = 10Log,g—v 18
s 810 N ) (18)
where coherent power, G.(f), and non-coherent power, Gy(f) are defined as
G = 7P IS,

Gy = -y O1IS, DI

A number of voice quality parameters can be derived from SDR(f). For example, SDR,,
is the average signal-to-distortion ratio in the j-th band, b,

19)

SDR, = L ¥ SDR(f) 20)

j feb,

2.9.5 Cross Residual Signal .

The cross residual signal is created by filtering the output speech with an inverse LPC
filter determined from the input speech. Assuming the LPC model adequately represents the
input speech, the cross residual signal will be approximately white if the types of distortions
present in the channel do not significantly change the voice statistics. Nonlinearities or
correlated noise added to the signal should make the cross residual measurably non-flat.
Potential voice parameters based on the cross residual include the spectral flatness measure,
percentile frequencies, and average power weighted frequency.

2.10 Parameters Being Considered by CCITT
Three objective voice parameters are being considered by CCITT SG XII for possible
standardization. They include the Cepstral Distance (NTT, Japan), the Information Index
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(France), and the Coherence Function (BNR, Canada). A fourth technique being considered,
NTIA’s PR method, is not an objective parameter, but rather is a method for selecting and
mapping objective parameters to predicted quality - it is discussed in Section 3.

2.10.1 Cepstral Distance (NTT)

The Cepstral Distance (CD) parameter proposed by NTT is a measure of overall difference
between and output voice cepstra. Since a finite number of cepstral coefficients are used, CD
is also the log difference of the cepstrally smoothed input and output spectra. It is defined
as follows [1], [2], [26]-[29]:

_ 10 < N ()3 (21)
D Tog, IO\J 2 § [C.()-C,0)]
where C,(i) and C (i) are the i-th cepstral coefficients of the input and output speech (derived
from LPC coefficients as described in [11]), and m is the number of coefficients computed
(currently 16). Before estimating C, and C,, the speech data is processed by a first order
difference operation to emphasize high frequency information. This practice is sometimes
used in LPC speech analysis to provide better representation of high frequency formants. In
effect the differencing operation removes an assumed pole on the unit circle. Of course, not
all speech frames possess these poles; however the effect of such frames on the cepstral
distance has not been reported.

NTT has developed quadratic regression formulae to map CD values into predicted MOS,
but they emphasize that these may not be valid for all types of data. Formulae for North
American English, Italian, and Japanese are shown below [53].

MOS = 3.70-0.05CD -0.09CD* (N.AEnglish),
MOS = 3.05-0.19CD -0.03CD?* (ltalian), (22)

MOS = 3.26-0.39CD -0.02CD?* (Japanese).

An alternative to using regression equations is to convert the CD values to an equivalent
stationary noise level. This value is input to NTT’s objective estimation model OPINE
(Overall Performance Index model for Network Evaluation) to produce MOS estimates.
When applied solely to a non-linear device and not a network, the former method is usually
adopted.

2.10.2 Information Index (France)

The Information Index (II) was developed in France by J. Lalou, and accounts for
multiplicative noise and types of distortion found in digital systems [30], [31]. The method
may be used to compare different systems directly when such distortions are the main
factors affecting transmission performance. The auditory system is modeled by dividing the
spectrum into 16 critical bands, and applying empirical frequency weights and hearing
thresholds for each bands. The basic form of the method is outlined here. See [31] for
details about the theoretical development of the method and weighting functions used. See
also [30] for additional details on implementation.

The signal-to-distortion ratio (SDR) in the i-th frequency band, denoted QS(i), is
computed first:

12
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QS() = 10 Log,, i , (23)
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where j ranges over all frequencies specified for the i-th band, b, Here, X(f) and Y(f) are
Fourier transforms of a given input and output speech frame, and frequency bands b, are
tabulated. Treating the bands as separate, independent channels, the mutual information
(i.e., the maximum channel capacity) of each band is computed, weighted, and summed to
form an overall Information Index:

16
RII = Y W,)- 3 ___ 24
i=l 0.1+ IO-NS’(:)*W,(s)]/lo]

where ©S(i) is the average of QS(i) over all frames, and W,(i) and W,(i) are tabulated
weighting functions accounting for critical bandwidth and perceptual importance of the i-th
frequency band, respectively. Equation (24) is correct for MNRU noise, however, for typical
digital systems an additional correction is used. The term @S() + W,(i) in (24) is replaced
by the following:
for V<-3.57 :
V +d tanh[0.07984(V) - 0.356325] ,

for -3.57<V<0 :
4.34291n[exp{0.23026(V+5.15)} - 1] +d[0.276V+0.3859) ,

forV>0 :
4.34291n[exp{0.23026(V+5.15)} - 1] +d tanh[0.062715 V +0.3109255) ,

where V = QST+ W,3i) .

Here, d is a correction factor, with d=0 for PCM and other digitized voice and d=-5.33 for
natural voice. This correction is not an ad hoc correction from opinion tests, but results from
communication theory and statistical properties of voice.

MOS is estimated from RII using the following mapping:

(25)

RIT - Log,[_fi_]

27.6-RII
YT = 1.003566 -RIT -1.4027 (268)
34!
MOS =
1+e?T

The mapping functions in (26) have been developed based on a series of listener tests
conducted in France. The regression equations can be adjusted for particular languages or
applications to provide optimal assessment performance.
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2.10.3 Coherence Function (BNR)'

BNR’s Coherence Function (CF) provides an overall measure of signal-to-distortion
between the input and output speech (see Section 2.9.5) [25], [32], [33], [57], [68]. The input
and output signal are first processed to obtain the input and output spectra and the complex
cross-spectrum. The power spectra and cross-spectrum are calculated using the Fast Fourier
Transform algorithm operating on successive segments 256 samples long, with 50% overlap.
Using a 125 ps sampling period (8000 samples/sec) each segment is 32 ms long. This is
effectively further reduced by application of the Hamming window to about 22 ms. These
segments are assigned to one of four quartiles of the segmental level distribution. The
quartiles are produced by normalizing each input signal segment to the long term r.m.s. level
and then dividing the resulting segmented level distribution into 4 parts, each containing a
quarter of the segments. The average coherent (CP) and non-coherent power (NCP) for each
quartile is computed as discussed in Section 2.9.5.

The next step is to normalize the coherent power to the "preferred” level (i.e., 82 dB rel.
20 pPa) Using power addition, the non-coherent power spectrum ("noise spectrum”) is
combined with the hearing threshold for continuous spectrum sounds to form a new masking
noise spectrum (MNS). The hearing threshold is given in Table 1. From that, the sensation
level Z is found by subtracting coherent power, CP, from masking power, MNS. this is then
transformed, at every given frequency, to an additive index P(Z) using the modified growth
functions:

Z<2.792 dB: P(Z) = 10@-ss0n0
Z22.792 dB: P(Z) = {1-10%-0m0}%

TABLE 1
PARAMETERS OF THE LISTENING OPINION MODEL ,

27

Frequency Hearing Threshold Frequency Weighting
Bo-K (dB rel 20 nPa / Hz) 10 Log B* (dB)

" 200 +5.0 -34.2
I 300 0.0 -33.3
400 -3.0 -32.9
500 -5.0 -32.9

600 - 6.0 -33.0 “

800 -8.0 -33.56 ||
1000 -9.0 -34.0
1250 -85 -34.7
1600 -8.0 -35.7
2000 -9.0 -37.3

! Much of the text for this section has been taken directly from [57] and [68] with the
kind permission of Bell Northern Research.
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25600 -11.5 -39.4
3000 -14.0 -41.3
3600 -13.5 -42.9
4000 -13.0 -44.0
5000 -12.6 -45.5
6000 -11.5 -46.7
" 8000 -8.0 -48.2

The product (or sum if expressed in decibels) of P(Z) and the frequency weighting factor
B® (where 10 Log;,B* is given in Table 1) is then integrated over the relevant frequency
range to obtain the listening opinion index (LOI). In practice, assuming that the sensation
level Z is approximately constant within suitably chosen narrow frequency bands, the
integration is replaced by a summation of products: B* ® P(Z) ¢ Af.

Up to this point, all calculations were done separately for each individual quartile,
yielding four values of listening opinion indices. Since these indices are assumed to be
additive, they can be averaged using the following weighting factors:

0.19 - for the lowest quartile
0.21 - for the second quartile
0.53 - for the third quartile
0.07 - for the highest quartile

The final LOI may be transformed into the MOS using the following modified relation-
ship:

MOsS = 1*5e” (28)
l+e*
where
x=1145Ln__LOT __ _ 1105 (29)
0.885 -LOT

2.11 Models for Voice Quality

Network-oriented models have been developed to assess quality assessment of voice
transmissions over the switched public telephone network [34]-[45]. Examples include
AT&T’s loss, noise, and echo model (LNE), British Telecom’s (BT) CATNAP model, and
NTT’s OPINE model. AT&T’s LNE model and BT’s CATNAP model are briefly described
here to exemplify this approach.

The AT&T LNE model described by Cavanaugh, Hatch, and others (see [34] for example)
examines circuit parameters such as loss, noise, echo path delay, and echo path loss.
Experiments conducted by Bell Laboratories beginning in 1965 produced extensive listener
satisfaction data for a broad range of network conditions. This information was normalized
and combined using a single set of equations fitted to the data for each circuit parameter.
The model predicts the Grade-of-Service as well as the percent of listeners rating the system
as "Good" or "Excellent” and the percent rating the system as "Poor” or "Unacceptable".

British Telecom’s CATNAP, and its earlier version CATPASS, models circuit loss, circuit
noise, room noise, quantizing noise, attenuation-frequency distortion, and sidetone paths.
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The CATNAP model requires overall sensitivity-frequency characteristic of each transmission
path and of the sidetone path, the noise level spectrum at the listener’s ear, the average
speech spectrum, and the average threshold of hearing. With these values, CATNAP
predicts loudness judgements, listening-effort scores, conversation-opinion scores, and vocal
levels. In addition, the model predicts the Grade-of-Service and percent Good-or-Better and
Poor-or-Worse.

Because these models (LNE, CATNAP, and OPINE), are strictly based on listener
satisfaction data for conditions found in the public telephone network, they are not generally
applicable to modern voice processing techniques such as low bit-rate coding. In addition,
their use requires detailed knowledge of transmission channel parameters that may not be
relevant to other applications such as digital mobile radio or voice codecs.

3. Pattern Recognition Based Assessment (NTIA)

Typically, regression curves are used to represent the relationship between the objective
voice parameter and estimated quality. Estimates based on multiple voice parameters offer
the potential of increased accuracy and robustness by taking advantage of the best features
of each parameter. Parameters (x,) can be combined using a multiple regression formula:

MOS =a,x, + a;x; + ... (30)

Higher order terms can be added to account for nonlinear relationships. This approach has
been studied by Barnwell et al [6] who found that significant improvement in voice quality
estimation was possible in some cases.

Disadvantages of regression techniques include the necessity of knowing the form of the
regression equation a-priori or determining it interactively by trial and error. In the event
the data or the parameter set changes, a new regression equation must be found. An
accurate regression equation becomes even more difficult to construct when multiple
parameters are desired for increased accuracy and robustness.

The pattern recognition method (PR) is an alternative to regression, and uses Bayesian
estimation to seek a nonlinear relationship between the parameters and objective quality.
An advantage of this approach is that no explicit model is required a-priori as is the case for
regression analysis. The non-linear model is determined automatically during training.

3.1 Requirements and Assumptions

3.1.1 Source Speech

Ideally, the source speech records will consist of male, female, and children (if appropri-
ate) voices reciting preselected sentences. For best results, the same ensemble of source
speech records should be used both during the training phase and for objective testing. This
will allow development of an objective parameter set and training statistics that are tuned
specifically for the test signal. In typical test scenarios, however, it is not often possible to
use the same source speech in the evaluation as was used for training. Very good perfor-
mance can still be achieved by the method in these cases.

3.1.2 Equipment Requirements

Any of the objective systems described in this report are simple enough to be implement-
ed on a desktop computer. Since there is seldom a requirement for real time voice quality
assessment, using several minutes of computer time to process each speech record is usually
acceptable. The result is still inexpensive and fast relative to the alternative of subjective
listener tests.
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Collecting data for testing requires equipment to inject the source speech into the test
channel and to record the processed output speech. Equipment for inputting the test speech
into the test channel can be any of the following:

A high fidelity tape recorder with source voice provided on audio tape.

* A Digital Audio Tape (DAT) drive with source voice provided on DAT tape.

* A Digital to Analog Converter (DAC) interfaced to a desk top computer, with source
voice provided as a digital file on a floppy disk.

Recording the processed voice can be done using similar equipment, i.e. a high fidelity
tape recorder, DAT drive, or Analog to Digital Converter (ADC) interfaced to a desktop
computer or workstation. Since the computer must have access to the digitized speech,
recordings made by audio tape or DAT must undergo analog to digital conversion by the
computer-based ADC. (Software could conceivably be written to use the DAT digital
information directly, and thereby remove this requirement.)

3.1.3 Training Speech Database

A representative database of source and processed speech is required to provide statistics
about the speech degradations. Processed speech records are obtained by passing the source
speech through systems relevant for a particular application. For example, a training
database applicable to low bit rate codecs might include source voice processed through a
variety of 2.4, 4.8, 8, and 16 kbit/s codecs, as well as multiple levels of quantizing error,
tandeming distortion, environmental background noise, and bit errors.

Finally, the training database must include subjective test results for all source and
processed records. Subjective information for each speech record should include:

Number of listeners
®  Fraction of listeners voting in each of 5 quality classes
®*  Mean opinion score

Reference information characterizing the listener panel may also be useful. This would
consist of MOS as a function of Q (signal-to-quantization noise ratio) as determined from
subjective tests of MNRU (Modulated Noise Reference Unit) distortion’. The importance of
this information to objective assessment is still to be determined. Eventually, however, it
may be useful in developing quality assessments that can be readily compared with scores
from other listener panels.

3.1.4 Data Preconditioning
A number of additional processing procedures are required for effective objective
assessment. These are important for conditioning both the digital speech data and the

? The MNRU, described in CCITT Recommendation P.70 (Red Book, Volume V), is a
device to simulate the effects of quantizing distortion. It can be used as a transfer standard
to allow comparisons between subjective tests (using different listener panels) of similar
types of codec. A transfer curve is obtained by graphing MOS verses a range of Q levels
(signal to quantization noise level - in dB) for a given listener panel. The quality of a circuit
condition can now be expressed in terms of a Q-rating, which is the Q value corresponding
to the circuit’'s MOS obtained from the transfer curve.
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measured objective parameter information. The following procedures are applied to digitized
speech prior to objective parameter measurement:

* Estimate relative time delay between input and output speech records. This is
accomplished by finding the maximum magnitude of the crosscorrelation function.
The delay is used to align the input and output speech records.

*  Pauses are eliminated by rejecting frames with power level 40 dB or more below the
peak RMS of the signal.

* Estimate the root mean-squared (RMS) amplitude of the input and output speech.
This is used to normalize the output speech to the same average power level as the
input. Power normalization reduces sensitivity of the objective algorithm to simple
changes in amplitude level. For implementation efficiency, this step is done after
pause elimination, even though RMS estimates are slightly affected by removal of the
pauses.

The following procedures are applied to parameter measurements:

¢  The parameter values are scanned for outliers that occasionally result from ill condi-
tioning of numerical algorithms. The presence of outliers is not detrimental to most
stages of objective assessment, but can cause problems during training by skewing
the training statistics. Therefore, outliers identified during training are removed
from the parameter files.

*  Parameter values are normalized by removing the parameter mean and dividing by
the parameter standard deviation computed over the entire training database (or a
carefully selected subset). This procedure ensures that all parameters are given
equal a-priori weighting. For example, the cepstral distance measure may have
magnitudes of between 0 and 7.0, while some spectral distortion parameters can
range from 0 to 500. Without normalization, the spectral distortion measure will
have more importance in a multivariate assessment than the cepstral distance
parameter, even though it may be less important for estimating quality. With
normalization, both parameters will tend to be zero mean with unit power, giving
neither measurement more importance.

3.2 Selecting Effective Objective Parameters

Considering the large number of objective parameters being considered, it is important
to identify a small subset that will provide the most accurate quality assessment. An
exhaustive search of all possible parameter combinations would normally be required to
identify the best parameter subset. Unfortunately, the number of possible combinations is
enormous and an exhaustive search can be ruled out due to excessive computational
requirements. An alternative to the exhaustive search is a "bottom-up" search which
attempts to select a good parameter set but does not guarantee optimality [46].

The algorithm begins by examining the performance of each individual parameter, and
selecting one providing lowest assessment error. In succeeding steps, new parameters are
added to the best set if they cause a sufficient increase in performance. Parameters can also
be removed if doing so does not significantly decrease performance.

3.2.1 Bottom-up Search Algorithm

1) Initialize the current best set to the empty set.
2) Evaluate all parameters individually, identify the best one.
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3) Add the best parameter to the current best set if the new performance exceeds
the old performance by threshold T,,,.

4) Remove one parameter from the current set and evaluate the modified
current set. Put this parameter back into the current set. Do this for all
parameters in the current set (except for any parameter just added). Remove
the parameter which causes the smallest reduction in performance, as long as
performance is not less than threshold T,,. This step tends to remove param-
eters whose usefulness has disappeared due to the addition of other parame-
ters.

5) Repeat steps 3 and 4 until no parameters are added or removed.

3.2.2 Parameter Performance Metrics

The bottom-up algorithm attempts to identify parameters minimizing some error
criterion. NTIA has designed several metrics specifically to measure voice quality prediction
performance. In most of their testing, however, they have used the chi-squared metric as
described below.

The chi-squared error between the predicted opinion score frequencies and the known
listener panel opinion score frequencies gauges the overall accuracy of predicted opinion
score frequencies. Assuming there are N listeners, the chi-squared error is

X} = N'Y, {P(a |2)-Ha, | X)}/H(o, | X). 8D

In (31), P(«, | x) is the average of P(@, | x,) computed over all parameter vectors x,. The term
P(w,!x,) is the estimated opinion score frequency for class ®, conditioned on x,. Finally, the
term H(w, | X) represents the actual listener panel opinion score frequency for class Q,, given
speech record X°.

3.3 Statistical Assessment Method

Bayes assessment of voice quality is accomplished by analyzing training data from
representative types of distortions. Training data consists of parameter values measured
from subjectively tested speech. Quality assessment is made by comparing parameters mea-
sured from the speech under test, i.e., of unknown quality, to the training data statistics.
The following section describes these steps in detail.

3.3.1 System Training

The training database consists of processed speech records for N, different types of
impairments. Speech records are divided into 32 m.s. frames (256 samples taken at an 8
kHz sampling rate) and processed to create parameter measurements. The result is a set of
parameter vectors (one vector per frame) for each distortion type.

The parameter conditional probability density function (cpdf) must be estimated for each
distortion. The conditional probability density function of x, for the m-th distortion can be
estimated using a k-nearest neighbor method [48]:

plx,|d,) = (k-1) / (N-v(x)) 382)

where i is the frame number, x, is a vector of parameter measurements, N is the total
number of frames per distortion, and v(x,) is the volume of a hypersphere with radius equal

3 To further clarify this notation, x, is a parameter vector measured from the i-th frame
of the speech record X.

19



to the distance from x, to the k-th nearest vector belonging to distortion d,. The method
makes heavy demands on system memory and is computationally intensive, but is completely
automatic.

A quick multi-modal estimate of p(x,ld,) can be formed by modeling the density as a
Gaussian mixture. K-means cluster analysis [49] is used to identify clustering in the
parameter data for each distortion. Output of cluster analysis consists of mean vector xm__
and covariance matrix C_. for the m-th distortion and c-th cluster. The Gaussian mixture
cpdf estimate is formed by fitting a Gaussian function to each cluster and forming a weight-
ed sum of these functions:

- N )
Pl |dy) = 3 (21:)*"’51|C....,|ﬁ exp{ g m ol r,wm,) } @9

where p is the number of parameters (dimensions) in vector x, N, is the number of vectors
assigned to the c-th cluster of the m-th distortion, N is the number of clusters in the m-th
distortion, and N is the total number of training vectors. Typically, (32) is used during
feature evaluation and selection, while the Gaussian mixture (33) is used to design the
classifier.

The probability of distortion d, is given by Bayes rule

N,
Pd, |x) = p(x,|d,)-Pd,) / ¥ plx,|d) - Pd) 34)
jel
where P(d,) is the a-priori probability of the m-th distortion and N, is the number of
distortions.

3.3.2 Opinion Score Probability

An estimate of the opinion score probability function P(w, | x,) can now be obtained. This
is the probability of opinion score w,, where the classes (q) range from 1 (unacceptable) to 5
(excellent). This function can be interpreted as the predicted frequency of listener panel
scores corresponding to test speech parameter vector, x,. The relationship is given by

P(o,|x)=) _P(d,|x) Pa,|x,d,) (35)

where P(w,|x,,d,) is the probability that opinion score @, is chosen given distortion d, and
parameter vector x,. This function is approximated by the listener panel relative frequencies
for distortion d,, given by H(w,!X,,d,). Here, X, represents the standard source voice
subjected to distortion d,. Parameter vector x, is measured from the i-th frame of X,,.

3.3.3 Mean Opinion Score Prediction

Having estimated class probability (35), we can now obtain a classification of voice
quality. This is given by w, which gives the largest value of P(w,|x,) and represents the
quality level most likely to be selected by a listener panel member. In a similar fashion, (34)
can be used to choose the most likely distortion.

The prediction of Mean Opinion Score for the i-th frame can also be found:

1]
MOS,-Y" q-Pw, | )

qz_; q % (36)
MOS =E {MOS, |x,}.
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Here, E{(-} is the expectation operator and can be approximated by averaging over all frames
of the speech record. As (35) shows, the estimate incorporates all of the listener panel
information, not just the mean opinion value of the training data.

3.3.4 Discussion of the PR Method

A key advantage of this technique is its ability to use multiple parameters selected to
maximize performance for a given application. After the voice parameter set is chosen,
selected distortions representative of the application are used to train the algorithm. The
ability of the method to "learn” based on training data allows it to handle very dissimilar
types of distortion and adapt when new types of distortion are introduced.

As an example, Figure 1 shows objective
MOS values computed using the cepstral
distance method graphed against subjective
scores. The distortions correspond to fe-
male speech from a database provided by
Comsat containing speech processed
through a variety of low to mid-rate codecs.
As can be seen, the CD behaves differently
for the MNRU-N condition ("M") and the 16
kbit/s condition ("+") than for the remaining
conditions. Regression lines (dashed) for
these three cases indicate that although the
CD is clearly sensitive to distortion level,
multiple mapping functions would be re-
quired to handle the diverse types of im-
pairments.

Figure 2 shows objective and subjective
results for the PR method applied to the
same female speech data using 3 objective
voice parameters: banded spectral distor-
tion as in (13), banded SDR as in (20), and
LPC Euclidean distance as in (9). Signif-
icantly, parameter set selection and train-
ing were completed using male speech data
from the Comsat database. In other words,
training and testing was done using com-
pletely different speech records (i.e., male
vs female voice), but using the same types
of impairments.

Figures 1 and 2 show that the PR meth-
od provides much better correlation with
subjective scores than the CD technique for
this dataset. The reason is that the method
uses estimates of the probability of distor-
tion d,, P(d,|x), to compute MOS. Since
P(d.|x) is based on multiple parameters
chosen specifically for this application, it
can contain more information than simple
distance measures. The mapping from
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objective parameter space to predicted MOS is thus automatically adjusted for distortion
type, as shown in (35).

Mean Opinion Score

4. Alternative Applications

In addition to being a tool for assessing 4-
new algorithms and devices, an objective ‘.\‘\\—
quality measure has other potential applica- 3.5 b2
tions. For example, it could be used in the ) S \ Subjective
verification of subjective test results. Lis- *\*  Scors
tener panel trials, which in some cases are
quite complex, are vulnerable to statistical 2.5 \
fluctuations of listener scores as well as ) \
human error in conducting the experiment 2 .
and in analyzing test results. Results from
the CCITT SG XII subjective test of 16 15 \
kbit/s codecs illustrate this potential use. ' Nu
Subjective mean opinion scores are graphed g ‘ . i ' i . .
in Figure 1 for MNRU speech data with Q 35 30 25 20 15 10 5 O
values of 35, 30, 25, 20, 15, 10, 5, and 0 dB Signal—to—Distortion Ratio (dB)
signal-to-quantizing noise ratios. Rather Figure 3 Averaged objective and subjecti
than the assumed linear relation between . J ubjective

A opinion scores for MNRU degraded
MOS and Q values, however, the subjective speech data
curve is not linear for S/N 2 25 dB. Objec- )
tive scores using the PR method applied to
the same data are presented on the same graph, and show the same basic shape. This is
indicative that the subjective scores are indeed reflective of degradations in the data, and are
probably not due to problems in the subjective scoring procedure. In fact, it turns out that
the curve reflects the presence of additional noise due to the A/D, and the tendency of
listener acores to saturate at S/N values over 30 or 35 dB.

Another alternate application is to use objective MOS values to develop more cost
effective subjective test designs [50]. For example, considerable effort is made to insert
reference conditions into a subjective test spanning the entire range of possible MOS. In
testing a new voice coding technique, it might be advantageous to concentrate reference
conditions in a narrower range of MOS values bracketing the expected MOS of the new
codec. This could increase precision of the test, reduce cost, or possibly both.

5. Validation of Objective Methods

5.1 Subjective Test Performance

Careful design of subjective listener tests provides reasonably accurate and reliable voice
quality assessments. However, the inherent variability of listeners is a difficult problem to
overcome. Factors contributing to this variability include differences in hearing ability, race,
gender, geographical origin, emotional attitude during the test, and differing interpretations
of the test criteria, such as "good", "fair", "poor”, etc. Listener variability is measured by
estimating the listener score variance for a given speech record:
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5
ot = LY n g - MOSY, 3D
n-1 q=1

where n is the number of listeners and n, is the number of listeners giving a score of q (on
a 1 to 5 scale). Typical values for o;, the listener score standard deviation, range from .6
to .8.

Listener variability also affects the reliability of MOS estimates. In general, accuracy
and repeatability are improved by using larger listener panels. The standard deviation of
MOS estimates decreases as the number of listenera increases:

oL
=_Z=. (38)
Jn

O mos

This means that measured MOS values will fluctuate within a range of roughly +6,,. if the
test is repeated using a listener panel from the same population (i.e., from the same
geographical location, same mix of male, female, race, backgrounds, etc.). For example,
using the typical values 6;=.7 and n=24 listeners, the range of error is approximately

+.7//24 = £.14 opinion score points. In practice, however, the make up of listener panels
is quite difficult to control, and Gyog values of .2 to .3 are more common. The value 0y, is
a reasonable figure of merit for subjective listener scores.

5.2 Objective Test Performance

Measuring the accuracy of objective assessment techniques in a meaningful way is not
straightforward. Accuracy may be sensitive to sentence material, talker voice, gender, and
especially to distortion type. The performance of objective techniques must therefore be
carefully defined in terms of the conditions and classes of distortion used in testing. For
instance, an objective measure known to perform well for high bit-rate coders would not be
applied to other types of voice communication such as single sideband radio without further
validation tests for these new applications. As a very simple example, consider Figure 4,
where the information index is used to predict MOS for speech corrupted with both band-
limited Gaussian noise and speech-correlat-

ed noise. The objective MOS values are
well correlated with subjective scores within
each class of distortion, but the correlation
is much worse when the distortions are con-
sidered together. The two regression lines
in Figure 4 show how the mapping between
subjective and objective scores can be ad-
justed as long as a priori knowledge exists
about distortion types present in the sys-
tem. (An exact correction to adjust for the
type of additive noise is given in [31].)

A measure of performance can be com-
puted using the objective and subjective
scores measured from the same speech
database. The squared correlation coeffi-
cient, p?, has sometimes been used to mea-
sure accuracy, but it does not provide a
meaningful basis for comparing objective
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Figure 4 Information Index MOS predictions

vs subjective values for added Gaus-

sian noise and speech-correlated noise
(Bell Labs database).

23



and subjective test accuracy. To explore this problem further, let the objective MOS for
distortion d be O(d) and the subjective MOS be S(d). The error variance can now be written
as

o = E{(0d)-S(d))3}. . (39)

where the expectation operator is taken over distortions and listeners. This value is not a
fair figure of merit since the subjective scores being used as reference are characteristically
different depending on listener race, geographic location, etc and are not absolutely accurate.
A first order correction can be applied to the objective measure to adjust to the listener
population (i.e., the set of listeners providing the S(d) scores):

0'd) = a-0d) + b, (40)

To demonstrate the need for a linear correction, suppose that MOS values from one
listener panel were graphed against those from a different panel for the same speech data.
It is quite unlikely that the values would lie on an ideal 45° line due to differences in the
listeners. In no way does this imply that one of the listener panels is wrong. Likewise,
MOS values from objective assessments should not be penalized for linear variation from the
45° line. The regression (40) simply adjusts the objective scores for listener panel differences
to avoid this type of penalty.

A new error variance, G,?, can thus be written as:

o’ = E{(01d)-S(d))*}. (41)

This error is minimized if a and b are chosen such that

a=p2% and b =5-a0, (42)
Co
where o4 and o, are standard deviations of subjective and objective MOS scores, respective-
ly, U and § are their means, and p is the correlation coefficient defined as:

2
p = Cos . (43)
Go0s

The relationship between p and o, is given by
ol = o5(1-p3). (44)

Although o,? has been adjusted to the current listener population, it does not account for the
variability of the listener scores, S(d), within this population. To help make this point
clearer, the "true" or underlying quality of distortion d, S’(d) can be modeled as the measured
listener MOS S(d) plus an error term &(d):

S'(d) = S(d)+e(d). (45)

If S(d) is replaced with S/(d) in (41), an expression of mean squared error is developed:
mse = o, = E{(0/(d)-S1d))*} (46)
= E{(01d) -5} -2E{e(d)(01d) -S(d))} + EleXd)} 7
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z -

62 = 0s(1-pd)+ai/n = 6%(1-p?) +Ghos, (48)

where the following assumptions have been made:
° The errors e(d) and Od)-S(d) are uncorrelated and at least one of them is zero
mean,

. E(e¥d)} = E(Sd)-S(d))*} = E((S(d)-8d))>) = variance of listener scores,
Omos’ = O,/n,

o The "true" quality of distortion d, S’(d), is equal to the global average of MOS values
from all possible listener panels in the population: S’ = E(S} = §.

The value ©,. is a measure of root mean squared error, and can be used to assess
objective performance. It is more meaningful than p* which does not directly provide
information about expected error. Further, o,. can be compared with 6, which measures
subjective listener score accuracy. However, since p® is easy to compute and often has been
used to measure objective assessment performance in the past, it may actually be a more
desirable metric. Equation (48) provides a means for determining what values of p* are
needed to achieve a level of objective performance comparable to subjective testing methods.

Figure 5 shows the relationship between 0.4 =
6, p°, and n (the number of listeners) 1\ Sorraafon
using typical values of 64°=1.0 and 6,=0.7. 0.38 e SOS elend
From this figure, an objective measure with —_

2 .

p“=.9 has a root mean squared error, ¢,,, in -

the range .3 to .35 when tested against a

panel of 20 or more listeners. However, as

discussed earlier, subjective error is typi-

cally less than this, often between .2 and .3.

For the objective method to provide compa-

rable accuracy requires a squared corre-

lation coefficient of .95 or more. This is not .y _ ' '

an easy goal for objective techniques to 10 13 A o ’3'0 35 40

meet, and may require that the domain of : ° .

application be carefully defined for each Figure § l?elatlonz of squared correlation
g coefficient, p°, to RMS error,s,., for

objective parameter. In the case of the different listener vanel sizes s ~1.0

NTIA multivariate system, separate param- =0.7 P 8- Tum iy

eter sets and training databases may be 'y

needed in order to handle different applica-

tions.

Equation (48) says that measured objective assessment error is made up of two terms:
one term accounts for difference between objective scores and the subjective reference, and
a second term accounts for the fact that the subjective reference is inaccurate due to a finite
number of listeners. In other words, even if an objective system seems to perform perfectly
by providing MOS estimates identical to the listener panel scores, it will still have an ex-
pected level of error determined by the accuracy of the subjective test. This does not imply
that objective performance is always poorer than subjective methods; rather it says that
tests of objective methods should be performed using the most precise subjective data
possible as reference. As Figure 5 shows, to achieve RMSE of .25, an objective method would
have to demonstrate correlation of p?=.95 if compared to results from a panel of 40 listeners,
but would need p?=<.99 if only 10 listeners were used.

.90

Root Mean Squored Error
o & o
[ ] w (7]
0
wn
'

|
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5.3 Test Results
Four objective assessment methods are being considered by CCITT for the Study Period
ending in 1992. These are the cepstral distance (CD), information index (II), coherence
function (CF), and pattern recognition method (PR) which are described in earlier sections.
For these tests, the PR method was trained using the Comsat speech dataset (male talker
only). The parameter set used in the PR method was selected to optimize assessment
performance for Comsat male speech data and is described as follows:
1. Root mean-squared log spectral difference between input and output speech, as in
(13).
2. Mean Euclidean distance between input and output LPC coefficients, as in (9).
3.  Average signal-to-distortion ratio, as in (20).
Parameters 1 and 3 are computed in the frequency range 560 to 2820 Hz.
This section summarizes results of testing the performance of the four techniques on
three different speech databases.

5.3.1 CCITT Database

The primary goal of the recent (1989-1991) CCITT 16 kbit/s codec evaluation was
subjective testing of codecs for developing an international standard. The test plan also in-
cluded an experiment to study the performance of four objective assessment techniques.
This experiment was carried out jointly by NTIA and NTT.

A subset of the database developed for the codec evaluation was used in the objective
test. Source speech data consists of 18 sentence pairs per talker using 2 male and 2 female
talkers. This was replicated in Italian, Japanese, and North American English. Subsequent
tests added German and Brazilian (Portuguese) speech data. Distortions consist of null (i.e.,
speech processed through the analog interfaces with no digital stages); 1, 2, and 4 tandems
of the AT&T LD-CELP 16 kbit/s codec; 1, 2, and 4 tandems of G721 32 kbit/s ADPCM; 1,
2, 4, 8, and 16 tandems of G711 64 kbit/s PCM; and MNRU with 35, 30, 25, 20, 15, 10, 5,
and 0 dB signal-to-distortion ratio.

5.3.2 Comsat Database

NTIA has applied the four objective methods to a speech database supplied by Comsat
Corporation. The Comsat source speech consists of 4 sentences for 1 male and 1 female
talker. Distortions include MINRU with 40, 35, 30, 25, 20, and 15 dB SDR; narrowband
MNRU (noise lowpass filtered to approximately 28 kHz) with 35, 25, and 15 dB SDR; 1, 2,
3, and 4 tandems of G721 32 kbit/s ADPCM; 2.4 kbit/s LPC codec; 2 types of 4.8 kbit/s
SELP codec; 3 types of 16 kbit/s codec; and 5, 6, 7, and 8 bit mu-law PCM.

5.3.3 Bell Labs Database

NTIA also applied the four objective methods to a speech database provided by AT&T
Bell Labs. The Bell Labs source data consists of 3 sentences for 4 male and 4 female talkers.
Distortions include added correlated noise at 5, 10, 15, 20, and 25 dBrnC; added band-
limited Gaussian noise at 25, 35, and 45 dBrnC; and results of 2 field tests using the public
switched telephone network in the San Francisco area.

5.3.4 Discussion of Test Results

Results of applying the four techniques to the three databases are summarized in Table
2, which shows the squared correlation coefficient between objective and subjective scores.
In the CCITT column, a range of values is given corresponding to the results for 3 different
languages. In cases where there were discrepancies between the NTT and NTIA results, the
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higher correlation value is shown in the table. The Comsat and Bell Labs datasets were not
processed by NTT, and the results shown are from NTIA tests.

e e e e e e = e ]
TABLE 2 ,
OBJECTIVE ASSESSMENT PERFORMANCE RESULTS
Objective CCITT Dataset Comsat Dataset Bell Labs Dataset
Parameter
e e e e e e e e e e e e i it |
Cepstral Distance 0.90-0.92 0.01 0.72
Coherence Fen 0.86-0.92 0.67 0.76
Information Index 0.68-0.94 0.59 0.74
Pattern Recognition 0.84-0.89 0.89 0.80

The CD produced excellent correlation (.90 to .92) for the CCITT test in all 3 languages.
Note that language specific regression functions are used to map CD to MOS, which
improves the CD performance. The CD produced very poor results (p?=.005) for the Comsat
dataset, and only fair results (p’=.72) for the Bell Labs dataset. The reason for the poor
results on the Comsat data is not known, however, NTT feels it may be due to processing
errors.

The coherence function performed well (p?=.86 to .92) on the CCITT data, but only fair
on the Comsat and Bell Labs datasets (p’=.67 to .75). These datasets are both challenging
for the objective algorithm. The Comsat dataset includes a wide variety of codec types, while
the Bell Labs data uses a large number of talkers.

The information index produced fair to good correlation (p’=.68 to .94) on the CCITT
dataset, but poor to fair correlations for the Comsat (p*=.59) and Bell Labs (p’=.74). Results
produced by NTT for the information index have been consistently better than those of NTTIA
suggesting possible implementation differences. Furthermore, the logistic function used to
map information values to MOS is based on subjective tests made in France. This function
could be tuned to achieve higher correlations by adjusting it for each language. Presumably,
similar corrections could also be made for the coherence function.

The PR method performed well for all datasets (p*=.80 to .89) for all datasets. It gave
the best correlation for both Comsat (.89) and Bell Labs (.80) data. Subsequent tests of the
PR method using a parameter set consisting of the CD and II, with training on North
American female speech have been even more promising. Correlations of .94 to .98 were
achieved for CCITT North American English, Italian, and Brazilian (Portuguese). Strangely,
however, near-zero correlations were measured for two other datasets - Japanese and
German. NTIA feels this problem will be corrected by a simple speech amplitude normaliza-
tion procedure [69]. These results may be significant if further tests on other data show
consistently high correlations.

Although each technique has produced good results on selected speech datasets (i.e.,
p*>.9), none of the methods produces consistently good results across all tested data. Thus
it appears that the ultimate goal of a technology independent assessment system has not yet
been achieved. Current techniques are reliable and accurate only within these catagories of
voice impairments for which the objective system has been well characterized. Applying the
methods to speech impairments outside of these classes will yield assessments whose
accuracy is unknown.
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6. Standards Development

6.1 Standards Planning

Test results indicate that current objective assessment techniques may not have
sufficient accuracy to replace subjective listener tests. However, there are several important
applications of objective methods which require less precision. Developing a standard
objective assessment technique will benefit users and developers of voice systems by
providing a reference measurement for preliminary assessment of quality. In no way will
the standard attempt to specify levels of voice performance, only methods of measuring
performance.

The CCITT SG XII is considering three alternative approaches to developing a recom-
mendation on objective voice quality. These are:

1. Choose the single best objective method.
2. Include all four of the methods being considered by CCITT.
3. Combine the best aspects of each into a single assessment algorithm.

Results of Section 5 make it clear that option 1 is not viable at this time since no one
method stands out above the others for all types of distortions.

Option 2 would entail specifying each objective algorithm, along with the types of
distortion and conditions for which it yields best results. This is an acceptable approach as
it gives the user the option of selecting the method best suiting his needs.

Option 3 offers the potential advantage of improved assessment performance. Further,
it removes from the user the burden of choosing which objective technique is best for his
application.

Whether the methods can be successfully combined into a single assessment system is
unclear. NTIA is currently studying this alternative by combining the CD, II, and CF
parameters using the multivariate PR method. The PR method provides a framework for
merging the three objective parameters into a single objective assessment and for training
the system for optimal performance on specific voice applications. During training each
parameter is automatically weighted based on its effectiveness in the current application.

Proceeding with option 3 will depend on how successfully the methods can be integrated.
Assuming the results are acceptable, specification of the standard should be as straightfor-
ward as for the other two alternatives.

Speclfic elements of a proposed standard should include:

Detailed specification of the algorithm.

. Scope of algorithm applicability. In other words, define the types of distortion for
which the method is known to work and not work.

o Expected level of accuracy for each application and average performance in terms of
squared correlation coefficient or RMSE for various distortions. Suggest recom-
mended uses of the standard (e.g., augmenting subjective test design).

6.2 Development Effort

The expected level of effort for developing a standard depends on which alternative is
chosen. Since the algorithms are fairly stable (i.e., have been defined and documented in the
literature), option 1 or 2 would require minimal effort to specify the standard. The biggest
workload will entail defining the scope of application for each objective method and compil-
ing distortions and performance levels for which the method has been evaluated.

Work on combining the four algorithms as in option 3 is underway at NTIA. Modifica-
tions to some parameters may be necessary for them to be incorporated into the PR system.
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If satisfactory results are achieved, NTIA will develop a specification for the resulting
method.

6.3 Liaison

Close liaison should be maintained with CCITT Study Group XII, and in particular with
the SG XII Speech Quality Experts Group (SQEG). Objective assessment methods are being
considered for standardization within both Working Parties XII/1 and XII/3, with the SQEG
being the primary focus of these efforts. Since the developers of all four objective algorithms
actively participate in SG XII, this may be the most logical organization for developing
objective voice quality standards. In this case, T1 Working Groups such as T1Y1, T1Q1, and
T1M1 should monitor and contribute to the CCITT effort where appropriate.

As another option, it may be desirable to focus domestic standardization efforts on
alternative applications of objective assessment techniques such as discussed in Section 4.
In this case, liaison between T1Y1, T1Q1, and T1M1 would be necessary due to algorithm,
performance, and measurement aspects of the project. Liaison with SG XII would also be
important if this approach is adopted.

7.0 Future Work

The performance of several proposed objective methods is quite promising, and may
justify their use in many applications where listener tests can be augmented or replaced
completely. Standards defining these objective measures and their intended applications can
be expected in the near future. However, a technique accurate and robust enough to replace
human listeners in all situations does not currently appear feasible.

Several important areas of research related to objective voice quality assessment can be
identified:

o It is doubtful that any single distortion measure, however complex, will be sufficient
to accurately predict voice quality in many real world cases. For example, while
spectral distortion parameters such as the coherence function or Bark spectral
distortion appear to accurately model perceived quality for many impairments, they
can not account for the effects of pure transmission delay. Delay has no effect on
quality for one-way speech, but significantly impacts quality when two-way conversa-
tion is taking place. Echo and temporal warping (i.e., time varying delay) are other
examples of impairments that are not accounted for by the types of objective parame-
ters discussed in this report. This is not to say that delay or echo cannot be mea-
sured and used as objective parameters - they can. However, the assessment
algorithm will need to incorporate information about all relevant degradations in the
signal, including spectral distortion, delay, echo, and others. A much more involved
psycho-acoustic model of hearing may be needed to address these impairments.

o Measures of voice quality are increasingly sought for vocoder, or synthesized, speech.
Distortion measures such as discussed in this paper are not directly applicable, since
generally no effort is made to reproduce the input voice signal. Only higher level
information such as phonemes is transmitted.

o Application specific objective measures may be a better solution than attempting to
identify a single technique for use in all situations. For example, voice transmitted
via single sideband radio will be subject to significantly different types of degradation
than found in telephone speech. Perceived quality is also highly dependent on
application; an air traffic controller is more concerned with intelligibility than with
tonal fidelity, while the opposite may be true for someone using the telephone to call
home.
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° More reliable and robust voice quality assessment may be possible using additional
information contained in transmitted voice. For instance, amplitude and spectral
properties are phoneme dependent and change markedly from frame to frame with
the result that the type and degree of distortion imposed by various coding algorithms
may be quite time dependent. Additionally, the perceptual importance of individual
phonemes should be accounted for by weighting the distortion measure on a frame by
frame basis. One approach is to segment the speech into phoneme related speech
partitions prior to objective assessment. In this way, quality scores for each partition
can be weighted according to the perceptual importance of phoneme related distor-
tion.

These areas and others will see increasing interest as technical and economic pressure
continues to build for dependable objective voice quality assessment techniques. Recommen-
dations expected soon from CCITT will likely represent only a partial and temporary solution
to this difficult problem, and continued research is crucial to develop more robust and
reliable techniques.
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